UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ESTRUTURAS E CONSTRUÇÃO CIVIL

VIABILIDADE DE USO DE CORDOALHA DE AÇO CP-210 RB EM VIGA PRÉ-MOLDADA PARA PONTES

Gabriel Moreira Migliore

São Carlos 2018

UNIVERSIDADE FEDERAL DE SÃO CARLOS CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ESTRUTURAS E CONSTRUÇÃO CIVIL

VIABILIDADE DE USO DE CORDOALHA DE AÇO CP-210 RB EM VIGA PRÉ-MOLDADA PARA PONTES

Gabriel Moreira Migliore

Dissertação apresentada ao Programa de Pós-Graduação em Estruturas e Construção Civil da Universidade Federal de São Carlos, como parte dos requisitos para obtenção do título de Mestre em Estruturas e Construção Civil.

Área de Concentração: Sistemas Construtivos

Orientador: Prof. Dr. Guilherme Aris Parsekian

São Carlos 2018

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da USFCar

Migliore, Gabriel Moreira.

Viabilidade de uso de cordoalha de aço CP-210 RB em viga pré-moldada para pontes / Gabriel Moreira Migliore. -- 2018. 175 f.

Dissertação (Mestrado) - Universidade Federal de São Carlos, campus São Carlos, São Carlos, 2018.

1. Concreto protendido. 2. Aço CP-210. 3. Longarina prémoldada. 4. Pontes. I. Título.

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Centro de Ciências Exatas e de Tecnologia Programa de Pós-Graduação em Estruturas e Construção Civil

Folha de Aprovação

Assinaturas dos membros da comissão examinadora que avaliou e aprovou a Defesa de Dissertação de Mestrado do candidato Gabriel Moreira Migliore, realizada em 30/08/2018:

Prof. Dr. Guilherme Aris Parsekian UFSCar m Profa. Dra. Gláucia Maria Dalfré UFSCar N Prof. Dr. Vladimir Guilherme Haach EESC/USP

DEDICATÓRIA

À minha família: minha esposa Maria Cândida e meus filhos, Fernando e Marcelo

AGRADECIMENTOS

Primeiramente a Deus, por ter me dado força e iluminação para superar os momentos mais difíceis na minha vida e por ter me dado oportunidade e sabedoria para realização deste trabalho.

À minha família, em especial aos meus pais Angelo Rubens e Helen Claudia (*in memorian*), à minha irmã Lara, à minha esposa Maria Cândida e aos meus filhos, Fernando e Marcelo, pelo amor e apoio incondicional em todos os momentos da minha vida.

Ao meu orientador, Prof. Dr. Guilherme Aris Parsekian, por todo o tempo que dedicou a me orientar durante o processo de realização deste trabalho e pela confiança em mim depositada.

Aos membros da banca de exame, Prof^a. Dr^a. Gláucia Maria Dalfré e Prof. Dr. Vladimir Guilherme Haach, pelas sugestões e apontamentos que contribuíram para a realização deste trabalho.

Aos meus professores de graduação e pós-graduação pela disposição e estímulo, em especial aos professores: José Samuel Giongo, Marcelo de Araújo Ferreira, Marco Antonio Pastore e Roberto Chust Carvalho.

À siderúrgica Belgo Bekaert Arames pela colaboração e troca de informações, em especial aos engenheiros Marcelo Torquato e Warley dos Santos.

Às construtoras Bandeirantes e Constroeste pela cordialidade e disponibilidade de acompanhamento da execução de Obras de Arte Especiais.

E a todos que contribuíram direta ou indiretamente para a realização deste trabalho.

A todos, meus sinceros agradecimentos.

"A menos que modifiquemos à nossa maneira de pensar, não seremos capazes de resolver os problemas causados pela forma como nos acostumamos a ver o mundo".

Albert Einstein

MIGLIORE, G. M. Viabilidade de uso de cordoalha de aço CP-210 RB em viga prémoldada para pontes. 2018. 175f. Dissertação (Mestrado em Estruturas e Construção Civil) - Universidade Federal de São Carlos, São Carlos, 2018.

Este trabalho visa documentar o processo de produção e as características do novo aço brasileiro de protensão CP-210 RB, bem como avaliar a viabilidade e indicar diretrizes de projeto para aplicação em obras de pontes e de viadutos com viga pré-moldada protendida. Neste estudo são apresentados exemplos numéricos de dimensionamento de viga isostática armada com uso de armadura passiva convencional e de viga isostática protendida com uso de armadura ativa com uso de aço CP-190 RB e CP-210 RB, para as situações com protensão completa e limitada, bem como detalhes típicos de projeto. Foram realizados estudos de comparação de consumos de materiais e serviços para a execução de vigas pré-moldadas armadas e protendidas, para os tabuleiros em estudo, onde foram fixados a quantidade de longarinas isostáticas e a largura do tabuleiro de pontes/viadutos rodoviários segundo padrão do DER-SP e foi variável apenas a altura da seção transversal da longarina em função do comprimento nominal do tabuleiro, de modo a atender as condições de projeto no ELS (Estado Limite de Serviço) e no ELU (Estado Limite Último) para cada sistema construtivo escolhido. A partir da análise foram determinadas linhas de tendência com os custos de produção de vigas isostáticas pré-moldadas para pontes rodoviárias, classe 450, com tabuleiro de largura nominal de 14 m e comprimento nominal de 20 a 35 m, para as soluções em concreto armado e protendido com uso de CP-190 RB e CP-210 RB. Com as linhas de tendência foi possível determinar que para tabuleiros de pontes ou viadutos rodoviários com comprimentos maiores que 22 m torna-se economicamente viável o uso de longarinas pré-moldadas protendidas com uso do novo aço brasileiro CP-210 RB. Este trabalho também apresenta para cada sistema construtivo considerado, as equações para determinar o custo total de produção de longarina pré-moldada em função do comprimento nominal do tabuleiro e em função dos custos unitários dos itens de produção: concreto, forma metálica, aço CA-50, aço CP-190, aço CP-210 e ancoragem. Os resultados obtidos mostram que o custo de ancoragem representa cerca de 15% a 20% do custo total de produção de viga protendida, sendo este percentual, para os casos com protensão completa, maior que o custo dos serviços de concreto e de forma. O custo relativo de ancoragem diminui com o aumento do comprimento nominal do tabuleiro.

Palavras-chave: concreto protendido, aço CP-210, longarina pré-moldada, pontes.

MIGLIORE, G. M. Viability of using CP-210 RB steel strand in precast girder bridges. 2018. 175f. Thesis (Master's Degree in Civil Structures and Construction) - Federal University of Sao Carlos, Sao Carlos, 2018.

This work aims to document the production process and characteristics of the new Brazilian prestressing steel CP-210 RB, as well as evaluating its use viability and to indicate design guidelines for the application in the design of precast prestressed concrete beam bridges. In this thesis, numerical examples of the design of isostatic reinforced beam are presented considering the use of conventional passive reinforcement and prestessed concrete using either CP-190 RB and CP-210 RB steels. Design procedures consider both full and limited prestessing specifications. Typical, design details are also considered. Comparative studies of materials and execution procedures are considered assessing the bridge deck, designed with several girder beams, for execution of the prestressed or reinforced precast beams. The number of girders and the deck width were determined according to the DER-SP specification for road bridges and overpasses. The beam height varies according to the span length. Designs assessed both the Service Limit State and the Ultimate Limit State considering each construction system. From the analysis results, trend lines were determined indicating the class 450 isostatic precast beams for road bridges production cost, with deck width of 14 m and nominal length from 20 to 35 m, considering solutions in reinforced concrete and CP-190 RB and CP-210 RB prestressed concrete options. With the trend lines, it was possible to determine that bridge or overpass for deck structure with lengths greater than 22 m are economically viable with the use of precast prestressed girders using the new Brazilian CP-210 RB steel. This work also presents, for each chosen construction system, the equations to determine the production cost of precast girder as a function of the nominal length of the deck structure and according to the production items unit costs: concrete, formwork, CA-50 steel, CP-190 steel, CP-210 steel and anchorages. The results show that the anchorage cost represents about 15% to 20% of the total production cost of the prestressed beam, beings this cost higher than the concrete and formwork costs in the case of full prestressing. The relative cost of the anchorage decreases with increasing the nominal length of the deck structure.

Keywords: prestressed concrete, grade 300 steel strand, precast girder, bridges.

Figura 1.1: Ponte Sant'Angelo em forma de arco com utilização de blocos de pedra 21
Figura 1.2: Construção da ponte de Luzancy com aduelas de concreto pré-moldado 22
Figura 1.3: Construção da ponte do Galeão com longarinas de concreto pré-moldado 23
Figura 2.1: Pontes de termoplástico reforçado com fibra de vidro em Roterdã
Figura 2.2: Ponte de vidro laminado mais alta e mais longa do mundo em Zhangjiajie 32
Figura 2.3: Construção da ponte Emílio Baumgart com balanços sucessivos
Figura 2.4: Vãos típicos para pontes em concreto protendido
Figura 2.5: Fases distintas de execução de viaduto com múltiplas vigas pré-moldadas 35
Figura 2.6: Exemplos de pontes com sistema estrutural em arco, treliça e cabos
Figura 2.7: Disposição das cargas móveis estáticas
Figura 2.8: Linha de influência de reação de apoio da seção transversal com 2 vigas 45
Figura 2.9: Esquema estático do processo de Courbon/Engesser
Figura 2.10: Esquema estático do processo de Fauchart
Figura 2.11: Exemplos de sistemas estruturais em concreto pré-moldado
Figura 2.12: Rendimento mecânico de seções transversais típicas de CPM51
Figura 2.13: Elementos pré-fabricados aplicados em pontes na Europa
Figura 2.14: Elementos pré-fabricados aplicados em pontes nos Estados Unidos53
Figura 2.15: Elementos pré-fabricados aplicados em pontes na Califórnia
Figura 2.16: Passarela Sherbrooke com treliça espacial de CUAD
Figura 2.17: Ponte Mars Hill com longarinas de CUAD
Figura 2.18: Ponte Little Cedar Creek com tabuleiro de CUAD57
Figura 2.19: Efeitos da protensão e tensões nas bordas da seção de meio do vão
Figura 2.20: Comportamento de viga isostática em concreto armado e protendido 60
Figura 2.21: Esquema simplificado do sistema com armadura pré-tracionada61
Figura 2.22: Pista de protensão em indústria de pré-fabricados de concreto
Figura 2.23: Equipamentos de protensão em indústria de pré-fabricados de concreto 62
Figura 2.24: Equipamentos de protensão em elemento pré-moldado de concreto63
Figura 2.25: Bainha metálica utilizada no sistema com pós-tração aderente
Figura 2.26: Fio, cordoalha nua e engraxada de aço de protensão65
Figura 2.27: Montagem de laje lisa com cordoalha engraxada de aço CP-190 RB65
Figura 3.1: Síntese do processo de produção de fios de aço71
Figura 3.2: Diferentes etapas do processo de trefilação71
Figura 3.3: Seção transversal de cordoalhas de 3 e 7 fios72
Figura 3.4: Diferentes etapas do processo de produção
Figura 3.5: Consumo de aço de protensão por região no Brasil
Figura 4.1: Planta da superestrutura do tabuleiro 14,10x25,00 m ² 81
Figura 4.2: Corte da superestrutura do tabuleiro 14,10x25,00 m ²
Figura 4.3: Corte longitudinal da superestrutura com detalhe da região de apoio
Figura 4.4: Correlação entre altura e vão de longarina pré-moldada protendida
Figura 4.5: Modelo estrutural do tabuleiro 14,10x25,00 m ²
Figura 4.6: Faixas de aplicação de carga móvel no modelo estrutural
Figura 4.7: Fluxograma para dimensionar e verificar armadura de flexão em CA

Figura 4.8: Fluxograma para dimensionar e verificar armadura de flexão em CP	89
Figura 4.9: Fluxograma para dimensionar armadura de cisalhamento e de torção	90
Figura 4.10: Comportamento de viga isostática em serviço	91
Figura 4.11: Armadura de fretagem e dispositivos padronizados para ancoragem ativa	92
Figura 5.1: Seções transversais da viga pré-moldada	96
Figura 5.2: Arranjo de armadura passiva na seção do meio do vão	98
Figura 5.3: Elevação longitudinal da viga pré-moldada protendida	102
Figura 5.4: Posição dos cabos nas seções transversais da viga pré-moldada	102
Figura 5.5: Tensões normais (MPa) na seção 5 para protensão completa e limitada	104
Figura 5.6: Seções transversais da viga pré-moldada	109
Figura 5.7: Posição dos cabos nas seções transversais da viga pré-moldada	113
Figura 5.8: Seções transversais da viga pré-moldada	117
Figura 5.9: Posição dos cabos nas seções transversais da viga pré-moldada	121
Figura 5.10: Seções transversais da viga pré-moldada	126
Figura 5.11: Posição dos cabos nas seções transversais da viga pré-moldada	129
Figura 6.1: Percentual de custos relativos para produção de viga pré-moldada	137
Figura 7.1: Diagrama momento-deslocamento em viga protendida e armada	149
Figura 7.2: Percentual de custos relativos para produção de viga armada	150
Figura 7.3: Percentual de custos para produção de viga com protensão limitada	150
Figura 7.4: Percentual de custos para produção de viga com protensão completa	151
Figura 7.5: Custo de produção de viga armada e protendida (protensão limitada)	153
Figura 7.6: Custo de produção de viga armada e protendida (protensão completa)	153
Figura 7.7: Custo de produção de viga com protensão limitada e completa (CP-210 RB)	. 154
Figura 7.8: Custo de produção de viga pré-moldada isostática	154
Figura 10.1: Forma da longarina pré-moldada VP2	172
Figura 10.2: Armadura transversal da longarina pré-moldada VP2 (CA)	173
Figura 10.3: Armadura passiva de flexão da longarina pré-moldada VP2 (CA)	174
Figura 10.4: Armadura ativa de flexão da longarina pré-moldada VP2 (CP)	175

LISTA DE TABELAS

Tabela 1.1: Relação entre resistência e preço unitário de materiais em CA e CP	26
Tabela 2.1: Valores característicos de carga móvel rodoviária	40
Tabela 2.2: Nível mínimo de protensão em função da agressividade ambiental	66
Tabela 2.3: Exigências relativas às fissuras em função do nível de protensão	66
Tabela 2.4: Resumo de tensões limites para protensão completa e limitada	69
Tabela 3.1: Composição química média do aço de protensão	72
Tabela 3.2: Características das cordoalhas de 7 fios com relaxação baixa (RB)	74
Tabela 3.3: Tensão inicial da armadura ativa na saída do aparelho de tração	75
Tabela 3.4: Principais fornecedores de cordoalhas de aço com padrão internacional	78
Tabela 4.1: Resumo de dimensões consideradas para os exemplos numéricos	84
Tabela 4.2: Ações permanentes e variáveis consideradas em valores característicos	85
Tabela 4.3: Preço unitário de itens para produção de longarinas	94
Tabela 5.1: Características geométricas da seção transversal 5	96
Tabela 5.2: Resumo de esforços solicitantes característicos	97
Tabela 5.3: Resumo de dimensionamento de armadura passiva de flexão	97
Tabela 5.4: Resumo de verificação de fadiga da armadura passiva de flexão	98
Tabela 5.5: Dimensionamento de armadura de cisalhamento combinada com torção	99
Tabela 5.6: Resumo de verificação de fadiga da armadura de cisalhamento	100
Tabela 5.7: Resumo de deslocamento estimado na longarina	101
Tabela 5.8: Características da armadura ativa para protensão limitada e completa	103
Tabela 5.9: Tensões normais nas bordas na seção 5 para protensão limitada	103
Tabela 5.10: Tensões normais nas bordas na seção 5 para protensão completa	104
Tabela 5.11: Resumo de tensões limites para protensão completa e limitada	105
Tabela 5.12: Resumo de verificação de armadura ativa e passiva de flexão no ELU	106
Tabela 5.13: Dimensionamento de armadura transversal para protensão limitada	106
Tabela 5.14: Dimensionamento de armadura transversal para protensão completa	107
Tabela 5.15: Verificação de fadiga da armadura transversal para protensão limitada	107
Tabela 5.16: Verificação de fadiga da armadura transversal para protensão completa	108
Tabela 5.17: Resumo de deslocamento estimado na longarina	108
Tabela 5.18: Características geométricas da seção transversal 5	109
Tabela 5.19: Resumo de esforços solicitantes característicos	110
Tabela 5.20: Resumo de dimensionamento de armadura passiva de flexão	110
Tabela 5.21: Resumo de verificação de fadiga da armadura passiva de flexão	111
Tabela 5.22: Dimensionamento de armadura de cisalhamento combinada com torção	111
Tabela 5.23: Resumo de verificação de fadiga da armadura de cisalhamento	112
Tabela 5.24: Resumo de deslocamento estimado na longarina	112
Tabela 5.25: Características da armadura ativa para protensão limitada e completa	113
Tabela 5.26: Tensões normais nas bordas na seção 5 para protensão limitada	113
Tabela 5.27: Tensões normais nas bordas na seção 5 para protensão completa	114
Tabela 5.28: Resumo de verificação de armadura ativa e passiva de flexão no ELU	114
Tabela 5.29: Dimensionamento de armadura transversal para protensão limitada	115
Tabela 5.30: Dimensionamento de armadura transversal para protensão completa	115

Tabela 5.31: Verificação de fadiga da armadura transversal para protensão limitada...... 116 Tabela 5.32: Verificação de fadiga da armadura transversal para protensão completa..... 116 Tabela 5.34: Características geométricas da seção transversal 5...... 118 Tabela 5.38: Dimensionamento de armadura de cisalhamento combinada com torção 119 Tabela 5.41: Características da armadura ativa para protensão limitada e completa....... 121 Tabela 5.43: Tensões normais nas bordas na seção 5 para protensão completa 122 Tabela 5.44: Resumo de verificação de armadura ativa e passiva de flexão no ELU....... 123 Tabela 5.46: Dimensionamento de armadura transversal para protensão completa 124 Tabela 5.47: Verificação de fadiga da armadura transversal para protensão limitada...... 124 Tabela 5.48: Verificação de fadiga da armadura transversal para protensão completa..... 124

 Tabela 5.49: Resumo de deslocamento estimado na longarina
 125

Tabela 5.50: Características geométricas da seção transversal 5...... 125 Tabela 5.54: Dimensionamento de armadura de cisalhamento combinada com torção 128 Tabela 5.57: Características da armadura ativa para protensão limitada e completa....... 130 Tabela 5.60: Resumo de verificação de armadura ativa e passiva de flexão no ELU....... 131 Tabela 5.62: Dimensionamento de armadura transversal para protensão completa 132 Tabela 5.63: Verificação de fadiga da armadura transversal para protensão limitada....... 132 Tabela 5.64: Verificação de fadiga da armadura transversal para protensão completa..... 133 Tabela 6.2: Custo de produção de longarina pré-moldada armada com uso de CA-50..... 135 Tabela 6.3: Custo de produção de viga com uso de CP-190 RB (protensão limitada) 135 Tabela 6.4: Custo de produção de viga com uso de CP-210 RB (protensão limitada) 135 Tabela 6.5: Custo de produção de viga com uso de CP-190 RB (protensão completa) 136 Tabela 6.6: Custo de produção de viga com uso de CP-210 RB (protensão completa) 136 Tabela 6.8: Custo de produção de longarina pré-moldada armada com uso de CA-50..... 138 Tabela 6.9: Custo de produção de viga com uso de CP-190 RB (protensão limitada) 138 Tabela 6.10: Custo de produção de viga com uso de CP-210 RB (protensão limitada) 139 Tabela 6.11: Custo de produção de viga com uso de CP-190 RB (protensão completa) ... 139 Tabela 6.12: Custo de produção de viga com uso de CP-210 RB (protensão completa) ... 139 Tabela 6.14: Custo de produção de longarina pré-moldada armada com uso de CA-50.... 141 Tabela 6.15: Custo de produção de viga com uso de CP-190 RB (protensão limitada) 141 Tabela 6.16: Custo de produção de viga com uso de CP-210 RB (protensão limitada) 141 Tabela 6.17: Custo de produção de viga com uso de CP-190 RB (protensão completa) ... 142 Tabela 6.18: Custo de produção de viga com uso de CP-210 RB (protensão completa) ... 142 Tabela 6.20: Custo de produção de longarina pré-moldada armada com uso de CA-50.... 143 Tabela 6.21: Custo de produção de viga com uso de CP-190 RB (protensão limitada) 144 Tabela 6.22: Custo de produção de viga com uso de CP-210 RB (protensão limitada) 144 Tabela 6.23: Custo de produção de viga com uso de CP-190 RB (protensão completa) ... 144 Tabela 6.24: Custo de produção de viga com uso de CP-210 RB (protensão completa) ... 145 Tabela 7.1: Resumo comparativo de dimensionamento de armadura de flexão no ELU.... 147 Tabela 7.2: Resumo comparativo de verificação de deslocamento na longarina no ELS... 148 Tabela 7.3: Resumo comparativo de custo de produção de longarina pré-moldada 152

LISTA DE ABREVIATURAS

AASHTO	American Association of State Highway and Transportation Officials
ABNT	Associação Brasileira de Normas Técnicas
ACI	American Concrete Institute
ASTM	American Society for Testing and Materials
ATO	ato de protensão
BSI	British Standards Institution
CA	concreto armado
CAA	classe de agressividade ambiental
CAD	concreto de alta desempenho
CALTRANS	California Department of Transportation
CBUQ	concreto betuminoso usinado a quente
CE	centro de equilíbrio
CEN	Comité Européen de Normalisation
CF	combinação frequente de ações
CG	centro geométrico
CIA	coeficiente de impacto adicional
CIV	coeficiente de impacto vertical
CML	concreto moldado no local
CN	combinação última normal
CNF	coeficiente de número de faixas
СР	concreto protendido
СРМ	concreto pré-moldado
CQP	combinação quase permanente de serviço
CR	combinação rara de serviço
CUAD	concreto de ultra-alto desempenho
BDI	benefícios e despesas indiretas
DER-SP	Departamento de Estradas e Rodagem do Estado de São Paulo
ELS	Estado Limite de Serviço
ELS-CE	Estado Limite de Compressão Excessiva
ELS-D	Estado Limite de Descompressão
ELS-F	Estado Limite de Formação de Fissuras
ELS-W	Estado Limite de Abertura de Fissuras
ELU	Estado Limite Último
EPUSP	Escola Politécnica da Universidade de São Paulo
FHWA	Federal Highway Administration
FIB	Fédération Internationale du Béton
IME	Instituto Militar de Engenharia
LEED	Leadership in Energy and Environmental Design
LRFD	Load and Resistance Factor Design
NBR	Norma Brasileira Registrada
OAE	Obras de Arte Especiais
PCI	Prestressed / Precast Concrete Institute

PEAD	polietileno de alta densidade
RB	aço de protensão com relaxação baixa
RN	aço de protensão com relaxação normal
STRAP	Structural Analysis Program
TPU	Tabela de Preços Unitários
UFSCar	Universidade Federal de São Calos
UNIFEB	Centro Universitário da Fundação Educacional de Barretos
USGBC	United States Green Building Council
USP	Universidade de São Paulo
VP	viga principal (longarina)
VT	viga transversina
VTRC	Virginia Transportation Research Council

LISTA DE SÍMBOLOS

Letras romanas

- A_c área da seção transversal bruta de concreto
- A_p área da seção transversal da armadura longitudinal ativa
- As área da seção transversal da armadura longitudinal passiva de tração
- As' área da seção transversal da armadura longitudinal passiva de compressão
- Ast área da seção transversal da armadura longitudinal de torção
- Asw área da seção transversal da armadura transversal de força cortante
- A₉₀ área da seção transversal da armadura transversal de torção
- acf contraflecha imposta na etapa de execução
- af deslocamento máximo (flecha final)
- ai deslocamento inicial (flecha imediata)
- a_p deslocamento inicial no ato de protensão
- a_q deslocamento devido às cargas variáveis
- b_f largura colaborante da mesa do elemento estrutural
- b_w largura da alma do elemento estrutural
- CTP custo total de produção de longarina pré-moldada
- CU_{aa} custo unitário do item de produção de ancoragem ativa
- CU_c custo unitário do item de produção de concreto classe C45
- CU_{ca} custo unitário do item de produção de aço CA-50
- CU_{cp} custo unitário do item de produção de aço CP-190 ou aço CP-210
- CU_f custo unitário do item de produção de forma metálica
- d altura útil
- E_{ci} módulo de deformação tangente do concreto
- E_{cs} módulo de deformação secante do concreto
- E_p módulo de elasticidade do aço de armadura ativa
- e_p excentricidade da força de protensão em relação ao CG da seção transversal
- fc tensão de resistência do concreto à compressão
- f_{cj} tensão de resistência do concreto à compressão aos j dias
- f_{ck} tensão de resistência característica do concreto à compressão aos 28 dias
- f_{ckj} tensão de resistência característica do concreto à compressão aos j dias
- f_{ct} tensão de resistência do concreto à tração
- f_{ct,f} tensão de resistência do concreto à tração na flexão
- f_{ct,m} tensão de resistência média do concreto à tração aos 28 dias
- f_{ctj,m} tensão de resistência média do concreto à tração aos j dias
- F_d valor de cálculo de ações devido à combinação de ações
- F_k valor característico de ações
- f_{pyk} tensão de escoamento convencional característica do aço de armadura ativa
- f_{ptk} tensão de resistência característica do aço de armadura ativa à ruptura por tração
- $f_{\text{sd},\text{fad}}$ tensão de resistência de cálculo do aço de armadura ativa à fadiga
- g ação permanente
- G_c módulo de deformação transversal do concreto
- h altura total da seção transversal

- Ic momento de inércia da seção bruta de concreto
- I_{eq} momento de inércia equivalente da seção fissurada de concreto
- It momento de inércia à torção da seção bruta de concreto
- III momento de inércia da seção fissurada de concreto no Estádio II
- k_f constante de mola vertical (processo de Fauchart)
- kt constante de mola à rotação (processo de Fauchart)
- M_a momento fletor na seção crítica para avaliação da flecha imediata estimada

 $M_{fad,máx}$ momento fletor máximo devido à combinação frequente de fadiga

- $M_{\text{fad},\text{min}}$ momento fletor mínimo devido à combinação frequente de fadiga
- M_{gk} momento fletor solicitante característico devido às ações permanentes
- M_{qk} momento fletor solicitante característico devido às ações variáveis
- M_p momento isostático de protensão
- M_r momento de fissuração do elemento estrutural
- M_{Rd} momento fletor resistente de cálculo
- M_{sd} momento fletor solicitante de cálculo devido à combinação de ações
- N_p esforço normal de protensão
- P carga concentrada por roda do veículo aplicada sobre o tabuleiro
- P força de protensão
- P_{ini} força de protensão correspondente à força na saída do aparelho de protensão
- P_{inf} força de protensão no tempo infinito após perdas imediatas e progressivas
- Po força de protensão no tempo zero após perdas imediatas
- p carga distribuída de multidão aplicada sobre o tabuleiro
- q ação variável
- R_i reação de apoio i para carga unitária na posição j (processo de Courbon/Engesser)
- r coeficiente de rendimento mecânico da seção transversal
- T_{gk} momento torçor solicitante característico devido às ações permanentes
- T_{qk} momento torçor solicitante característico devido às ações variáveis
- T_{Rd2} momento torçor resistente de cálculo, relativo às diagonais comprimidas de concreto
- T_{Sd} momento torçor solicitante de cálculo devido à combinação de ações
- V_c parcela de força cortante resistida pelo concreto
- V_{fad,máx} força cortante máxima devido à combinação frequente de fadiga
- V_{fad,mín} força cortante mínima devido à combinação frequente de fadiga
- V_{gk} força cortante solicitante característica devido às ações permanentes
- V_{qk} força cortante solicitante característica devido às ações variáveis
- V_{Rd2} força cortante resistente de cálculo, relativa às diagonais comprimidas de concreto
- V_{Sd} força cortante solicitante de cálculo devido à combinação de ações
- x profundidade da linha neutra
- W_{c,1} módulo resistente à flexão da seção de concreto em relação a fibra inferior
- W_{c,2} módulo resistente à flexão da seção de concreto em relação a fibra superior
- wk abertura característica de fissuras na superfície do concreto
- y₁ distância da fibra inferior em relação ao centro geométrico da seção transversal
- y₂ distância da fibra superior em relação ao centro geométrico da seção transversal

Letras gregas

- α_e relação entre os módulos de elasticidade do aço e do concreto
- α_F fator de forma que correlaciona as resistências à tração na flexão com a tração direta
- $\Delta f_{sd,fad}$ variação de tensão normal no aço de armadura passiva para 2x10⁶ ciclos
- $\Delta f_{pd,fad}$ variação de tensão normal no aço de armadura ativa para 2x10⁶ ciclos
- γ_g coeficiente de ponderação para ações permanentes
- γ_p coeficiente de ponderação para ações de protensão
- γ_q coeficiente de ponderação para ações variáveis
- γs coeficiente de ponderação de resistência do aço
- *l* comprimento do vão teórico
- ψ₀ fator de redução para combinação última normal
- ψ1 fator de redução para combinação frequente
- ψ₂ fator de redução para combinação quase permanente
- ρ_s taxa geométrica de armadura longitudinal passiva de tração
- σ₂ tensão normal na fibra superior da seção de concreto
- σ₁ tensão normal na fibra inferior da seção de concreto
- σc tensão normal de compressão no concreto
- σ_{ct} tensão normal de tração no concreto
- σ_p tensão normal no aço de armadura ativa
- $\sigma_{p,ini}$ tensão normal no aço de armadura ativa na saída do aparelho de tração protensão
- $\sigma_{p,inf}$ tensão normal no aço de armadura ativa no tempo infinito após perdas totais
- $\sigma_{\text{p,lim}}$ tensão normal limite no aço de armadura ativa na saída do aparelho de tração
- $\sigma_{\text{p},\text{P0}}$ tensão normal no aço de armadura ativa no tempo zero após perdas imediatas
- σs tensão normal no aço de armadura longitudinal passiva de tração
- σ_{sw} tensão normal no aço de armadura transversal
- v coeficiente de Poisson do concreto
- φ coeficiente de impacto
- φ coeficiente de fluência do concreto

1	INTRODUÇÃO	21
	1.1 OBJETIVOS	26
	1.1.1 Geral	26
	1.1.2 Especificos	27
	1.2 JUSTIFICATIVA	27
	1.3 METODOLOGIA	28
	1.4 DESCRIÇÃO DOS CAPÍTULOS	28
2	PONTES EM CONCRETO PROTENDIDO	30
	2.1 PONTES	30
	2.1.1 Considerações gerais	30
	2.1.2 Sistemas estruturais	33
	2.1.3 Ações	39
	2.1.4 Combinações de ações	42 11
		····
	2.2 CONCRETO PRE-MOLDADO	41 //7
	2.2.2 Secões transversais	51
	2.3 CONCRETO DE UL TRA-ALTO DESEMBENHO	5/
	2.3.1 Considerações gerais	
	2.3.2 Aplicação	55
	2.4 CONCRETO PROTENDIDO	57
	2.4.1 Considerações gerais	57
	2.4.2 Sistemas de protensão	61
	2.4.3 Niveis de protensão e Estados Limites	65
3	AÇOS DE PROTENSÃO	70
	3.1 PROCESSO DE PRODUÇÃO	70
	3.2 PRINCIPAIS CARACTERÍSTICAS	73
	3.3 APLICAÇÃO NACIONAL	76
	3.4 APLICAÇÃO INTERNACIONAL	77
4	METODOLOGIA	80
	4.1 EXEMPLOS DESENVOLVIDOS	80
	4.2 ANÁLISE E DIMENSIONAMENTO ESTRUTURAL	84
	4.3 COMPARATIVOS DE CUSTOS DE PRODUÇÃO	92
5	DESENVOLVIMENTO DOS CASOS EM ESTUDO	95
	5.1 TABULEIRO 14.10x20.00 m ²	95
	5.1.1 Características geométricas e esforços solicitantes	95
	5.1.2 Dimensionamento de longarina armada	97
	5.1.3 Dimensionamento de longarina protendida	101
	5.2 TABULEIRO 14,10x25,00 m ²	109
	5.2.1 Características geométricas e esforços solicitantes	109
	5.2.2 Dimensionamento de longarina armada	110

	5.2.3	Dimensionamento de longarina protendida	
	5.3 5.3.1 5.3.2 5.3.3	TABULEIRO 14,10x30,00 m² Características geométricas e esforços solicitantes Dimensionamento de longarina armada Dimensionamento de longarina protendida	117 117 118 121
	5.4 5.4.1 5.4.2 5.4.3	TABULEIRO 14,10x35,00 m² Características geométricas e esforços solicitantes Dimensionamento de longarina armada Dimensionamento de longarina protendida	 125 125 127 129
6	CUS	TOS DE PRODUÇÃO	134
	6.1	TABULEIRO 14,10x20,00 m²	134
	6.2	TABULEIRO 14,10x25,00 m ²	138
	6.3	TABULEIRO 14,10x30,00 m ²	140
	6.4	TABULEIRO 14,10x35,00 m ²	143
7	DISC	USSÃO DE RESULTADOS	146
	7.1	COMPARATIVOS DE DIMENSIONAMENTO	
	7.2	COMPARATIVOS DE PERCENTUAIS DE PRODUÇÃO	149
	7.3	COMPARATIVOS DE CUSTOS DE PRODUÇÃO	
	7.4	EQUAÇÕES GERAIS DE CUSTO DE PRODUÇÃO	
8	CON	CLUSÕES	
9	REF	ERÊNCIAS BIBLIOGRÁFICAS	
-) APÊ		
			······

1 INTRODUÇÃO

Segundo Leonhardt (1979), desde o início da Antiguidade podem ser encontradas construções de pontes entre os povos primitivos, formadas por um simples tronco de madeira ou formadas por uma rede de cipós de árvores. Em regiões onde a madeira era escassa, a pedra era utilizada como material para a construção de pontes. Cabe ressaltar o grande avanço dos romanos com a arte da forma e do trabalho com pedras. Exemplo desse desenvolvimento é a ponte Sant'Angelo (Figura 1.1), a qual foi construída pelo imperador Adriano em 134 d.C. sobre o rio Tibre em Roma, em forma de arco, com a utilização de blocos de pedra. A partir da concepção da forma geométrica, elementos em forma de arco são sujeitos apenas a compressão para os carregamentos definidos.

Figura 1.1: Ponte Sant'Angelo em forma de arco com utilização de blocos de pedra

Fonte: Wikipédia (2004)

As pontes de ferro fundido em forma de arco treliçado surgiram no fim do século XVIII. Com o advento das ferrovias e o avanço em novos materiais de construção, ferro fundido e aço, iniciou-se a construção de grandes pontes capazes de suportar cargas elevadas. No início do século XX o concreto começou a ser aplicado em pontes, inicialmente, apenas para substituir as pedras como material de construção. Em seguida foi utilizado para lajes de tabuleiro e somente em 1912 surgiram as primeiras pontes com vigas em concreto armado e, a partir da década de 40, as primeiras pontes em concreto protendido (LEONHARDT, 1979). Sanabra-Loewe a Capellà-Llovera (2014) observaram que embora os princípios da protensão tenham sido introduzidos nos Estados Unidos por Peter H. Jackson e na Alemanha por C. F. W. Doehring no final do século XIX, foi com o francês Eugène Freyssinet que a tecnologia do concreto protendido teve seu grande desenvolvimento. Em 1928 Eugène Freyssinet apresentou as hipóteses fundamentais e necessárias para obtenção de êxito na protensão do concreto, a partir de estudos sobre os efeitos da retração e da deformação lenta do concreto.

Em 1939 Eugène Freyssinet desenvolveu e patenteou o sistema Freyssinet de ancoragem de cunha cônica, com capacidade de 200 kN para 12 fios de aço de 5 mm. A ponte de Luzancy, executada por Eugène Freyssinet sobre o rio Marne, na França, foi a primeira obra com elementos de concreto protendido, com vão de 55 m e construída com aduelas prémoldadas de concreto no período entre 1941 a 1946. A Figura 1.2 ilustra as fases de construção da ponte de Luzancy. A construção da ponte foi interrompida devido a Segunda Guerra Mundial e sua construção foi retomada em 1945 (FREYSSINET, 2004).

A ponte de Luzancy foi protendida nas três direções, longitudinalmente e transversalmente com 12 fios de aço de 5 mm pós-tracionadas e verticalmente com fios de 5 mm pré-tracionados. A viga central de seção unicelular fechada, ilustrada na Figura 1.2 possui 39 m de comprimento e pesa 90 tf. O grande sucesso da ponte de Luzancy permitiu a Eugène Freyssinet a construção de mais cinco pontes semelhantes, com vãos na ordem de 74 m sobre o rio Marne, entre o período de 1947 a 1951. Essas cinco pontes foram Ussy, Annet, Tribardou, Changis e Esbly. Todas as pontes foram executadas com segmentos de concreto pré-moldado pré-tracionados e posteriormente, na fase de montagem, os elementos foram pós-tracionados (XERCAVINS; DEMARTHE; SHUSHKEWICH, 2010).

Figura 1.2: Construção da ponte de Luzancy com aduelas de concreto pré-moldado (a) montagem do feixe composto por 22 aduelas (b) montagem dos 3 feixes de aduelas na obra

Fonte: Freyssinet (2004)

Conforme Nawy (2009), após a Segunda Guerra Mundial, quando a Europa encontrava-se arrasada, era necessário reconstruir de maneira rápida as principais pontes que foram destruídas pela guerra. Deste modo, G. Magnel de Ghent (na Bélgica) e Y. Guyon (na França), desenvolveram métodos e conceitos de protensão para o projeto e construção de várias pontes na Europa Ocidental e Central. Na Inglaterra, entre as décadas de 30 e 60, P. W. Abeles desenvolveu o conceito de protensão parcial. F. Leonhardt (na Alemanha), V. Mikhailov (na Rússia) e T. Y. Lin (nos Estados Unidos), cujos trabalhos também foram importantes para o desenvolvimento e o aperfeiçoamento do concreto protendido.

A primeira obra de concreto protendido no Brasil foi a ponte do Galeão, no Rio de Janeiro, construída em 1948 com uso de aço de protensão, ancoragens e equipamentos importados da França, com projeto desenvolvido sob supervisão de Eugène Freyssinet. A Figura 1.3 ilustra a fase de construção da ponte do Galeão em 1948, permitindo interligar a Ilha do Governador à Ilha do Fundão. Foi inaugurada em janeiro de 1949 e recebeu o título de a mais extensa ponte do mundo à época, com 380 m de extensão e vãos de 19 a 43 m. A ponte foi executada com tubulões a ar comprimido, travessas de apoio pré-moldadas e vigas longitudinais de seção I pré-moldadas com sistema de pós tração com protensão completa (VASCONCELOS, 1992).

Figura 1.3: Construção da ponte do Galeão com longarinas de concreto pré-moldado

Fonte: Vasconcelos (1992)

A ABNT NBR 6118:2014 define elementos de concreto protendido, como aqueles "[...] nos quais parte das armaduras é previamente alongada por equipamentos especiais de protensão, com a finalidade de, em condições de serviço, impedir ou limitar a fissuração e os deslocamentos da estrutura, bem como propiciar o melhor aproveitamento de aços de alta resistência no Estado Limite Último (ELU)". O ACI 318:2014 define concreto protendido, como aquele elemento no qual "[...] foram introduzidas tensões internas para reduzir possíveis tensões de tração no concreto resultantes de cargas" externas. A definição americana de concreto protendido é complementada pelo manual de projeto de concreto pré-moldado e protendido do PCI (2010), de modo que o concreto protendido "[...] pode ser usado para melhorar as capacidades estruturais de um elemento de concreto".

As principais vantagens do uso da protensão, de acordo com Buchaim (2007), especialmente para os elementos de concreto sob flexão, são:

- limitação ou eliminação de fissuras;
- redução ou praticamente eliminação de flecha diferida ao longo do tempo;
- menor consumo e melhor arranjo de armadura na seção transversal, devido ao uso de aços de alta resistência e concreto de melhor qualidade;
- minoração ou impedimento da corrosão da armadura;
- maior resistência à fadiga do aço;
- maior resistência às tensões originadas de força cortante e torção;
- estruturas mais esbeltas e com menor peso próprio do que de concreto armado;
- capacidade de vencer maiores vãos.

Outra importante vantagem do uso da protensão, especialmente para obras com limitação de gabarito, caso típico de obras de pontes e viadutos rodoviários, é a capacidade de obter elementos com menor altura de seção transversal quando comparado com os elementos de concreto armado, para situações de vãos e carregamentos iguais, em virtude do aumento de rigidez à flexão em relação ao concreto armado. Esse aumento de rigidez ocorre pela possibilidade de considerar toda a inércia bruta do concreto, uma vez que este encontra-se não fissurado. A partir do projeto de posicionamento dos cabos de protensão é ainda possível impor contraflecha ao elemento, reduzindo o valor final da flecha, o que também permite reduzir a seção transversal.

Nawy (2009) exemplifica que, em geral, para elementos sob flexão, a altura da seção transversal dos elementos de concreto protendido é cerca de 65% a 80% da altura da seção dos elementos de concreto armado, e consequentemente o consumo de concreto é cerca de 20% a 35% menor. Com o recente desenvolvimento de concreto de ultra-alto desempenho, a diferença tende a ser maior.

Conforme Buchaim (2007), as principais desvantagens do concreto protendido são:

- elaboração mais rigorosa do projeto estrutural;
- necessidade de equipamentos e acessórios especiais, como por exemplo atuadores hidráulicos, manômetros e sistemas de ancoragem;
- utilização de mão de obra especializada, com domínio das técnicas de protensão;
- controle de execução mais rigoroso, principalmente durante a etapa de posicionamentos dos cabos ou bainhas, injeção de nata de cimento nas bainhas e no alongamento dos cabos de protensão.

O projeto de elementos de concreto protendido exige maior nível de estudo da estrutura, sendo necessário avaliar todas as etapas de serviço da peça, desde a etapa inicial de execução da protensão, por meio do alongamento dos cabos de protensão, até a etapa final de ruína da peça, com o esgotamento da capacidade resistente do elemento estrutural. Estruturas em concreto protendido exigem maior ênfase aos Estados Limites de Serviço (ELS) e ao cálculo de perdas de protensão, imediatas e progressivas. Além de verificações e detalhamentos da estrutura, o projeto deve conter os procedimentos construtivos para a execução e uso do elemento estrutural (FRANÇA; ISHITANI; GRAZIANO, 2004).

Cholfe e Bonilha (2016) afirmam que ao longo do último século a evolução da Engenharia Estrutural ocorreu principalmente devido ao avanço de três fatores: materiais estruturais, processos de cálculos e de projetos, e métodos e procedimentos construtivos. O desenvolvimento de novos aditivos e adições para o concreto promoveu melhorias de qualidade, maior durabilidade e aumento de resistência à compressão, que nos dias atuais ultrapassam valores de típicos de 50 MPa aos 28 dias, chegando a casos de mais de 200 MPa.

Com o avanço industrial das ligas metálicas, principalmente devido às melhorias no processo de trefilação e utilização de elementos mais nobres na composição química do aço, recentemente foi disponibilizado no mercado brasileiro o aço de alta resistência CP-210 RB, com importantes aplicações em elementos de concreto protendido.

De acordo com Pfeil (1984), do ponto de vista econômico, o aumento do custo proveniente da utilização de concreto e de aço de alta resistência é inferior ao ganho de resistência e desempenho do elemento estrutural, especialmente em elementos de concreto protendido. A Tabela 1.1 exemplifica que, com a utilização de aço de protensão CP-190 RB em elementos de concreto protendido (CP), o aumento de resistência ao escoamento do aço é de 3,4 vezes e o acréscimo de custo unitário é de 2,4 vezes quando comparado com o uso

do aço convencional CA-50 em elementos de concreto armado (CA). Quando utilizado concreto de classe de resistência C50 em elementos de CP o aumento de resistência à compressão do concreto é de 2,0 vezes e o acréscimo de custo unitário é de 1,2 vezes, quando comparado com o uso concreto de classe de resistência C25 em elementos de CA. Estes resultados indicam que o aumento de custo é sempre inferior ao aumento de resistência dos materiais utilizados.

Os custos unitários apresentados na Tabela 1.1 são relativos a material e mão de obra/serviço, fornecidos com uso de Tabela de Preços Unitários (TPU) do Departamento de Estradas de Rodagem do Estado de São Paulo, DER-SP (2018), relativa a março de 2018 com valores não desonerados para Obras de Arte Especiais. Os preços unitários contemplam os valores relativos a mão de obra, encargos sociais, BDI e todos os equipamentos necessários à perfeita execução dos serviços.

Sistema construtivo	Concreto armado (CA)	Concreto protendido (CP)	Relação CP / CA
Resistência característica do concreto à compressão (MPa)	25	50	2,0
Preço unitário do concreto (R\$/m³)	521,99	638,07	1,2
Tensão de escoamento característica do aço (MPa)	500	1.710	3,4
Preço unitário do aço (R\$/kg)	10,42	25,08	2,4

Tabela 1.1: Relação entre resistência e preço unitário de materiais em CA e CP

Fonte: Adaptado de TPU DER-SP (2018)

1.1 OBJETIVOS

1.1.1 Geral

O presente trabalho tem como objetivo avaliar o uso de cordoalhas de aço CP-210 RB na produção de viga pré-moldada de pontes ou viadutos rodoviários em concreto protendido a fim de determinar a solução com melhor desempenho técnico, viabilidade econômica e facilidade executiva para vigas isostáticas de tabuleiro com comprimento nominal entre 20 e 35 m entre apoios, também em comparação com a solução em concreto armado.

1.1.2 Específicos

Os objetivos específicos deste trabalho são:

- apresentar o processo de produção e as características do aço CP-210 RB;
- identificar os detalhes típicos relativos a protensão com uso de cordoalhas de aço CP-210 RB;
- apresentar resultados de dimensionamento de vigas de pontes de tabuleiro com comprimento nominal entre 20 e 35 m entre apoios, utilizando concreto armado e concreto protendido com uso de aço CP-190 RB e CP-210 RB;
- comparar consumos de materiais e de serviços, além de custos de produção para os casos de viga pré-moldada de pontes em estudo;
- elaborar linhas de tendência a fim de determinar a solução mais econômica entre as estudadas, para um determinado tabuleiro com comprimento nominal entre 20 e 35 m.

1.2 JUSTIFICATIVA

Conforme Carvalho (2013), até a década de 90 a maioria das pontes e viadutos em concreto armado ou protendido eram moldadas no local. A superestrutura desse processo construtivo é composta usualmente por vigas longitudinais de seção transversal fechada unicelular (caixão) ou seção aberta em forma de duplo T. Uma das principais desvantagens do processo construtivo moldado no local é a necessidade da interrupção ou desvio do tráfego da via em obstáculo por um longo período de tempo, para a execução de fôrmas, cimbramento, cura e ganho de resistência do concreto. Com a Industrialização da Construção Civil, o processo construtivo em concreto pré-moldado (CPM) se tornou uma solução bastante empregada devido a sua economia de custos e de prazos, na maioria dos casos, quando comparado ao concreto moldado no local (CML).

A superestrutura de obras de pontes e viadutos rodoviários ou ferroviários, composto por múltiplas vigas pré-moldadas em concreto armado ou protendido é atualmente, principalmente na região sudeste, um dos sistemas estruturais mais utilizados em obras usuais de pontes ou viadutos. Nesse sistema construtivo a laje do tabuleiro é constituída por pré-lajes de concreto pré-moldado, que são posteriormente solidarizadas por concretagem no local. As transversinas em concreto moldado no local são introduzidas no conjunto estrutural de modo a aumentar a rigidez do tabuleiro para garantir a distribuição transversal de cargas. Preferencialmente as transversinas são apenas posicionadas próximo a região do apoio, podendo haver casos com transversinas intermediárias.

Em função do crescente emprego do concreto protendido no Brasil e interesse na redução de consumo materiais e minoração de custos na Construção Civil com a utilização de técnicas mais eficientes, recentemente, uma nova cordoalha com aço CP-210 RB foi introduzida no mercado brasileiro, sendo desejável fornecer parâmetros úteis para a orientação de projeto e de execução para elementos protendidos com aço CP-210 RB.

Com o avanço das tecnologias na Construção Civil e com a redução dos custos do sistema de protensão ao longo dos últimos anos, este estudo se justifica, na medida em que busca identificar a viabilidade técnica e econômica do concreto protendido em vigas prémoldadas isostáticas de pontes rodoviárias usuais, com uso de materiais tradicionais ou recentemente incorporados à construção de obras rodoviárias.

1.3 METODOLOGIA

De modo a alcançar os objetivos propostos, foi necessário realizar a revisão bibliográfica a respeito dos assuntos relativos ao tema em estudo, a partir do levantamento de normas e especificações técnicas nacionais e internacionais, bem como textos didáticos, artigos técnicos e consultas a fornecedores de cordoalhas de aço de protensão. Os assuntos abordados na revisão bibliográfica dizem respeito a pontes, concreto pré-moldado, concreto protendido e aço de protensão CP-190 e CP-210.

Os exemplos numéricos de dimensionamento de viga pré-moldada armada com uso de aço comum CA-50 e protendida com uso de cordoalhas de aço de protensão CP-190 RB e CP-210 RB foram desenvolvidos conforme os critérios e detalhes de dimensionamento identificados na revisão bibliográfica. A partir dos exemplos numéricos foram elaborados estudos comparativos de consumo de materiais e serviços e custos de produção de longarina de ponte rodoviária. Os custos de produção foram realizados por meio de Tabela de Preços Unitários (TPU) fornecida pelo Departamento de Estradas de Rodagem do Estado de São Paulo, DER-SP (2018).

1.4 DESCRIÇÃO DOS CAPÍTULOS

Este capítulo 1 inclui introdução ao assunto em estudo, bem como os objetivos, justificativas e metodologia adotada.

Nos capítulos 2 e 3 são apresentados a revisão bibliográfica relativa ao tema em estudo, sendo inicialmente focado a abrangente temática sobre a concepção estrutural de ponte e o capítulo seguinte focado especificamente sobre os aços de protensão.

No capítulo 4 são abordados os critérios considerados para a realização do trabalho, com os exemplos numéricos desenvolvidos detalhados no capítulo 5.

Os consumos e custos de produção são apresentados no capítulo 6, sendo a discussão dos resultados exposta no capítulo 7.

O capítulo 8 inclui as conclusões do trabalho.

O capitulo 9 traz as referências bibliográficas utilizadas no corpo do texto.

O apêndice ilustra o detalhamento típico de longarinas em CA e CP.

2 PONTES EM CONCRETO PROTENDIDO

2.1 PONTES

2.1.1 Considerações gerais

Conforme Pfeil (1979) denomina-se ponte uma construção destinada a permitir a continuidade de uma via de qualquer natureza por meio da transposição de obstáculos naturais ou artificiais. Como exemplos, a via em questão pode ser uma passagem de pedestres, uma ciclovia, uma rodovia, uma ferrovia, uma hidrovia, uma aerovia, um aqueduto, um gasoduto ou oleoduto. Quando o obstáculo transposto é constituído, de forma predominante, por um curso ou corpo d'água é utilizado o termo ponte propriamente dito. Para as situações em que o obstáculo é composto por um vale ou por uma via de comunicação é utilizado o termo viaduto. O termo passarela é utilizado para construções com via exclusiva de pedestres e/ou ciclistas.

De acordo com Stucchi (2006), para o início do projeto de uma ponte é fundamental conhecer a sua finalidade e as condições locais onde a obra será realizada, principalmente a respeito dos seguintes aspectos: geométrico, topográfico, geológico, hidrológico, condições climáticas, tráfego e outros. Considerando os materiais e os sistemas construtivos disponíveis, busca-se elaborar um projeto, estendendo-se à execução e manutenção, que atenda aos requisitos de segurança, funcionalidade, economia e estética. Em razão do processo criativo e da relevância estética do produto final, as obras de pontes são usualmente denominadas de Obras de Arte Especiais (OAE). O termo Obras de Artes Correntes é usualmente designado para as obras de muros de ala e galerias.

As pontes de modo em geral, sob o ponto de vista dos aspectos estruturais, podem ser divididas em três partes principais: infraestrutura, mesoestrutura e superestrutura. A superestrutura é composta por lajes, vigas principais e secundárias, elementos destinados a vencer o obstáculo e a receber diretamente as ações, como por exemplo as ações de veículo. A mesoestrutura é constituída por encontros, pilares e aparelhos de apoio, que tem a função de receber as ações da superestrutura e transmitir para a infraestrutura, além de receber as outras ações, tais como pressão de vento, solo e água em movimento. Constituem a infraestrutura os elementos de fundação, sapatas, blocos e estacas, estes são responsáveis por receber as ações da mesoestrutura e transmitir as mesmas ao solo (PFEIL, 1979).

Segundo Freitas (1978), as pontes podem ser classificadas segundo diversos critérios, com destaque para: comprimento, natureza do tráfego, desenvolvimento planimétrico e altimétrico, material da superestrutura, sistema estrutural da superestrutura e processo construtivo da superestrutura. Atualmente os materiais mais utilizados na superestrutura de pontes são: madeira, concreto armado, concreto protendido, aço e misto aço-concreto. As pontes com superestrutura executada em blocos de pedra, concreto simples, alvenaria e corda estão atualmente em desuso, exceto para condições de preservação histórica ou entretenimento. Atualmente pode-se encontrar outros materiais sendo utilizados na superestrutura de pontes, como: termoplásticos reforçados com fibra de vidro, vidro temperado e concreto de ultra-alto desempenho.

De acordo com Chandra *et al.* (2010), o compósito termoplástico foi inicialmente utilizado nas ferrovias norte-americanas para substituição dos dormentes de madeira. Posteriormente em 1998 foi aplicado em obras de pontes para a substituição de laje de tabuleiro e somente em 2002 na cidade de Nova Jersey, foi executada a primeira ponte com toda a superestrutura composta por termoplásticos reforçados com fibra de vidro, vigas com perfil I e laje de tabuleiro. Segundo a FiberCore Europe (2018), Roterdã, na Holanda, inova na construção de pontes com compósitos termoplásticos desde 2009. Inicialmente o material era utilizado para substituição de antigas pontes de madeira e aço. Atualmente existem cerca de 100 pontes de compósitos termoplásticos em Roterdã. A Figura 2.1 ilustra exemplos de pontes de termoplástico reforçado com fibra de vidro em Roterdã.

Figura 2.1: Pontes de termoplástico reforçado com fibra de vidro em Roterdã

(a) montagem do tabuleiro com vão de 21 m

(b) passarela de ciclovia com vão de 16 m

Fonte: FiberCore Europe (2018)

As pontes de vidro são populares na China. Conforme observado por Hongtao (2016), atualmente são mais de 60 estruturas deste gênero e inclusive onde está localizada a ponte de vidro mais alta e mais longa do mundo, no Parque Florestal Nacional de Zhangjiajie, no sul da China (Figura 2.2). A ponte suspensa a 300 m de altura foi inaugurada em agosto de 2016 e estabeleceu 10 recordes mundiais entre projeto e construção. A ponte de vidro possui 430 m de comprimento, 6 m de largura e une as duas extremidades de falésias do desfiladeiro. O tabuleiro da ponte é formado por três camadas de vidro laminado transparente, totalizando 99 painéis. Cada painel possui espessura de 45 mm e dimensões de 3,00x4,50 m². Os painéis danificados de vidro laminado podem ser removidos e substituídos individualmente.

Figura 2.2: Ponte de vidro laminado mais alta e mais longa do mundo em Zhangjiajie

(b) teste de impacto do vidro laminado

(a) vista geral da passarela de vidro

Fonte: Hongtao (2016)

Conforme Carvalho (2013), o processo construtivo da superestrutura de pontes ou viadutos em concreto pode ser subdivido em: pontes moldadas no local com fôrmas fixas ou deslizantes, pontes com elementos pré-moldados e pontes com balanços sucessivos ou progressivos, com a utilização de elementos pré-moldados ou moldados no local. O processo construtivo em balanços sucessivos consiste na execução de segmentos do elemento longitudinal, executados a partir dos pilares e simultaneamente para cada um dos lados do mesmo. A execução dos segmentos é realizada a partir dos tramos adjacentes ao pilar considerado e até atingir o tramo central, completando assim o elemento longitudinal.

Conforme observado por Vasconcelos (2005), a técnica de execução de pontes em balanços sucessivos foi desenvolvida pelo brasileiro Emílio Baumgart. Em outubro de 1930 foi inaugurada a primeira ponte de concreto em balanços sucessivos no mundo, a ponte de Herval sobre o Rio do Peixe em Santa Catarina. A ponte, com extensão total de 120 m e vão central de 68 m, permitiu interligar as cidades de Herval d'Oeste e Joaçaba. A Figura 2.3 ilustra a fase de construção da ponte Emílio Baumgart, denominação dada após o falecimento de Baumgart. O processo construtivo com balanços sucessivos foi aprimorado pelos alemães, a partir do uso do concreto protendido para a reconstrução de pontes destruídas pela Segunda Guerra Mundial.

Figura 2.3: Construção da ponte Emílio Baumgart com balanços sucessivos

Fonte: Thomaz (2011)

A ponte Emílio Baumgart foi construída com viga reta de alma cheia, com altura variável de 1,70 m no meio do vão e 4,00 m nos apoios. A relação entre a altura da viga no meio do vão e o próprio vão é de 1:40. O vão central foi dividido em segmentos de concretagem de aproximadamente 1,50 m e dispostas transversinas a cada 3,00 m. Os segmentos de concreto armado em balanço eram unidos por intermédio de luvas com roscas. Na madrugada de julho de 1983 ocorreu uma grande enchente na região, o nível d'água encobriu o arco central e destruiu as fundações da ponte, bem como vários imóveis e a estação ferroviária (VASCONCELOS, 2005).

2.1.2 Sistemas estruturais

Entre as diversas classificações de pontes e viadutos, cabe destacar como uma das mais importantes a classificação em função do sistema estrutural da superestrutura, subdividido em: ponte em laje, ponte em viga, ponte em pórtico, ponte treliçada, ponte em arco, ponte estaiada e ponte pênsil. As pontes em lajes são utilizadas para pequenos vãos na ordem de 10 a 15 m. Já as pontes pênseis são normalmente bem aproveitadas para vãos acima de 1.000 m (CARVALHO, 2013).

A Figura 2.4, adaptada do manual FHWA-NHI-15-047, fornecido pelo *U.S. Department* of *Transportation – Federal Highway Administration* (2015), FHWA, apresenta os intervalos de vãos típicos aplicáveis para os principais tipos de pontes em concreto protendido.

Analisando a Figura 2.4 é possível verificar que as pontes em vigas múltiplas de CPM (concreto pré-moldado) são recomendadas para vãos entre 15 a 60 m. Pode se observar também que as pontes em balanços sucessivos são recomendadas para vãos de até 230 m e que as pontes estaiadas são recomendadas para vãos a partir de 180 m.

Conforme apresentado na Figura 2.4, para pontes com vãos entre 45 a 90 m é recomendado a utilização do sistema de pontes com vigas múltiplas unidas. De acordo com manual FHWA-NHI-15-047 do FHWA (2015), a superestrutura desse sistema estrutural de ponte consiste da união de vigas múltiplas de CPM, de seção aberta na região do vão, com vigas de CPM ou CML, de seção pluricelular na região do apoio. A união é realizada mediante o uso de pós-tração e envolve pequenas junções moldadas no local para conectar a extremidade das vigas de vão com as vigas da região do apoio. Desta forma é estabelecida a continuidade do sistema estrutural da superestrutura da ponte.

Figura 2.4: Vãos típicos para pontes em concreto protendido

O sistema estrutural de pontes em lajes apresenta facilidade e rapidez de execução, pequena altura de construção, comportamento estrutural bidimensional, boa capacidade de distribuição de esforços, alta rigidez à torção, baixa rigidez à flexão e utilização usual para pequenos vãos. Apresentam seção transversal maciça, nervurada ou alveolar em concreto pré-moldado ou moldado no local. O sistema longitudinal das lajes pode ser simplesmente apoiado ou contínuo. Para pontes em lajes de concreto armado, a relação entre espessura de laje e vão da ponte varia de 1:15 a 1:20 e para pontes em lajes de concreto protendido a relação de 1:30 (MASON, 1977).

O sistema longitudinal de pontes em vigas pode ser contínuo, biapoiado em um único tramo ou em uma sucessão de tramos isostáticos. A seção transversal é tipicamente

Fonte: Adaptado de FHWA-NHI-15-047 (2015)
composta por viga de seção fechada (seção celular ou caixão) ou seção aberta (duas ou mais vigas de seção T ou I). Vigas de seção celular apresentam grande capacidade de distribuição de esforços em função da alta rigidez à torção e alta capacidade à flexão para momentos positivos e negativos, devido à mesa superior e inferior. A superestrutura com vigas de seção aberta é composta por um conjunto de vigas longitudinais, que em colaboração com a laje, apresenta alta capacidade à flexão e por vigas transversais de extremidade, com ausência ou presença de vigas intermediárias, responsáveis pelo ganho de rigidez do conjunto para melhor capacidade de distribuição transversal de cargas (STUCCHI, 2006).

A Figura 2.5 ilustra distintas fases de execução de um viaduto rodoviário de vigas múltiplas pré-moldadas projetado pela empresa Migliore Pastore Engenharia na cidade de São José do Rio Preto, SP. O viaduto foi construído entre 2016 e 2017 sobre linha férrea e duas vias da avenida da cidade. O tabuleiro desse viaduto tem largura total de 9 m, extensão total de 215 m e é composto por sucessão de vigas isostáticas protendidas, com vãos efetivos de 25 a 35 m. As longarinas desse viaduto foram protendidas com uso de aço CP-210 RB.

Figura 2.5: Fases distintas de execução de viaduto com múltiplas vigas pré-moldadas

(a) içamento e movimentação de longarina protendida no canteiro de fabricação

(b) montagem de longarina de 35 m sobre as travessas com auxílio de dois guindastes

(c) vista superior do tabuleiro do viaduto composto por vigas pré-moldadas e pré-lajes

Fonte: Autor

Conforme Lima e Almeida (2013), para superestruturas de grande extensão devem ser executadas juntas de dilatação, de modo a minimizar os esforços gerados na estrutura pelo efeito da variação de temperatura e ação da retração e da fluência do concreto. Para tabuleiros com comprimento de até 150 m, compostos por sucessão de vigas pré-moldadas isostáticas, as juntas de dilatação entre vãos adjacentes podem ser substituídas por lajes de continuidade. A laje de continuidade promove a continuidade de esforços horizontais sem, entretanto, promover a continuidade de esforços de flexão oriundos de ações verticais. Este elemento estrutural constituí de uma solução simples, de fácil execução e que promove maior conforto ao usuário, pois permite o tráfego contínuo e elimina o desconforto provocado pelo choque das rodas contra os desníveis existentes em juntas de dilatação em inadequado estado de conservação.

Conforme Leonhardt (1979), as pontes em pórtico ou em quadro rígido são executadas com ligação do tipo monolítica, permitindo a transferência de momentos fletores entre a superestrutura e a mesoestrutura. Nesse sistema estrutural, parte dos esforços de flexão da viga longitudinal é transmitida, por exemplo, para os pilares ou paredes de encontro, promovendo a redução dos esforços de flexão da viga na seção do meio do vão. A redução dos esforços de flexão conduz à redução da altura da viga na seção de meio do vão. Esse tipo de sistema estrutural é usual em obras de pontes ferroviárias.

As pontes treliçadas são tipicamente executadas em estruturas de aço ou madeira. Esse sistema estrutural é composto por barras delgadas cujas extremidades são conectadas usualmente por articulações sem atrito, deste modo todos os elementos transmitem apenas força axial de compressão ou tração. As barras da treliça são posicionadas em padrão de área triangular e os nós são formados tipicamente por ligação soldada ou parafusada. O sistema estrutural em treliças é característico por apresentar estruturas leves e de rápida execução, porém pode se tornar complexo em função do porte da obra (LEET; UANG; GILBERT, 2009).

As pontes em arco são formadas por membros curvos solicitados à compressão direta sob ação de seu peso próprio. Por ser um sistema solicitado a compressão pura, favorece o uso de materiais maciços, tais como blocos de rocha, concreto e alvenaria. O sistema estrutural em arco exige que a fundação resista a grandes esforços horizontais provocados pela forma geométrica do arco. As pontes em arco podem ser constituídas por um conjunto maciço formado por laje e paredes laterais em forma de arco ou abóbadas. O sistema estrutural em arco pode também ser composto por tabuleiro superior apoiado em montantes ou por tabuleiro inferior suspenso por pendurais ou tirantes (LEONHARDT, 1979).

O sistema estrutural aplicado em pontes estaiadas é composto por um tabuleiro rígido suspenso por um conjunto de cabos retos inclinados, os quais são devidamente fixados nas torres de ancoragem. Nesse sistema estrutural o tabuleiro representa o banzo inferior comprimido e os cabos inclinados representam as diagonais tracionadas que transmitem as cargas às torres, que consequentemente transmite-as à fundação. Desta forma e em função do número de cabos de aço, o sistema estrutural pode ser considerado similar a uma ponte em balanço, conduzindo tipicamente ao processo construtivo do tabuleiro em concreto protendido com balanços sucessivos de elementos pré-moldados (LEONHARDT, 1979).

Nas pontes pênsis, o tabuleiro contínuo é suspenso por um conjunto de pendurais verticais que são ligados a dois cabos longitudinais, estes dispostos parabolicamente com seção transversal maior que a dos pendurais e fixados nas torres de sustentação. A transferência das cargas do tabuleiro à torre é realizada por intermédio dos pendurais verticais e dos cabos parabólicos, ambos sujeitos apenas a tração direta. A ponte pênsil quando sujeita a elevada ação de vento pode apresentar movimentação indesejável do tabuleiro, tornado assim o tráfego desconfortável e perigoso. Em casos extremos pode ocorrer o colapso da estrutura, como ocorrido com a ponte de Tacoma Narrow em 1940 nos Estados Unidos, sendo assim necessário que o tabuleiro apresente grande rigidez à torção, a fim de minimizar as movimentações provocadas pela ação de vento (MASON, 1977).

A Figura 2.6 ilustra exemplos de pontes com sistema estrutural da superestrutura em arco e em cabos, na África do Sul, na Austrália, na França e nos Estados Unidos. A ponte Bloukrans (Figura 2.6a), construída entre 1980 a 1983 na África do Sul, com vão de 272 m sobre o vale Natureza é um exemplo de ponte em arco único de concreto armado. O tabuleiro da ponte rodoviária, com extensão total de 451 m, está localizado a 216 m acima do rio Bloukrans em Western Cape. O arco em concreto, com largura de 12 m e espessura variável entre 3,60 m a 5,60 m, foi construído em balanços sucessivos. Após o arco completo, foram construídos sobre o arco 23 pares de pilares com seção transversal de 100x250 cm². Em seguida, sobre os pilares, executado o tabuleiro de seção fechada pluricelular (ISSAC, 2008).

A Figura 2.6b ilustra um exemplo de ponte em arco treliçado, a ponte sobre a baía de Sydney, inaugurada em 1932 na Austrália. O comprimento total da ponte metálica é de 1.149 m, com vão principal de 503 e largura de 49 m. O peso total do arco metálico treliçado é de cerca de 39.000 tf, composto por 28 painéis treliçados, com altura variável de 18 a 57 m. Nas extremidades do arco metálico estão localizadas as quatro torres com 89 m de altura cada. O ponto mais alto do arco está a 134 m do nível do mar e suspende o tabuleiro de seis faixas de tráfego. A ponte com tráfego rodoviário, ferroviário e de pedestres, permite interligar o centro financeiro de Sydney com a costa norte, residencial (STRUCTURAE, 2018).

A ponte da Normandia ilustrada na Figura 2.6c, foi inaugurada em 1995 na França, com vão principal de 856 m sobre o rio Sena é um exemplo de ponte estaiada com cabos

dispostos em leque. A ponte rodoviária com extensão total de 2.141 m permite interligar Le Havre a Honfleur. O tabuleiro com largura média de 22 m e altura de 3 m, é suspenso por 184 cabos estaiados, os quais são fixados em duas torres centrais com altura total de 215 m. De modo a não restringir o tráfego marítimo no rio Sena, o tabuleiro foi construído a 60 m acima do nível d'água (BROWN, 2005).

A ponte Golden Gate, em serviço desde 1937 nos Estados Unidos, com vão principal de 1.280 m sobre a baía de São Francisco é um exemplo típico de ponte pênsil, conforme ilustrado na Figura 2.6d. Incluindo os acessos, a extensão total da ponte rodoviária é de 2.737 m. O tabuleiro treliçado, com largura de 27 m e altura de 7,60 m, é suspenso por dois cabos principais de diâmetro de 92 cm, fixados em duas torres centrais com altura total de 227 m. Cada cabo principal pesa 11.000 tf e é composto por 27.572 fios de aço. A produção dos cabos principais ocorreu no próprio local da obra, com auxílio de uma roldada móvel que transportava os fios de aço de um extremo ao outro da ponte. O processo de produção dos cabos foi realizado em 6 meses (MACDONALD; NADEL, 2008).

Figura 2.6: Exemplos de pontes com sistema estrutural em arco, treliça e cabos

(a) ponte em arco Bloukrans na África do Sul

(b) ponte em arco na baía de Sydney, Austrália

(c) ponte estaiada da Normandia na França

Fonte: Structurae (2018)

2.1.3 Ações

A ABNT NBR 8681:2003 define ações, como aquelas que "[...] provocam esforços ou deformações nas estruturas". As ações são classificadas segundo a sua variabilidade no tempo em três categorias: ações permanentes, ações variáveis e ações excepcionais. As ações permanentes possuem intensidade constante e são aquelas cuja variação no tempo é pequena, praticamente desprezível, em relação ao tempo médio de vida da estrutura. Ações variáveis são aquelas de caráter transitório, cuja variação no tempo é significativa em torno do tempo médio de vida da estrutura. As ações excepcionais são aquelas que tem duração extremamente curta e baixa probabilidade de ocorrência durante a vida da estrutura.

As ações permanentes a serem consideradas em estruturas de pontes de concreto armado e protendido, podem ser subdividas de acordo com a ABNT NBR 8681:2003 em: a) peso próprio de elementos estruturais; b) peso próprio de elementos não estruturais (pavimentação, revestimento, calçadas, lastro ferroviário, trilhos, dormentes, barreiras, guarda-rodas, guarda-corpo, gradil e outros); c) empuxo de terra e de água; d) forças de protensão; e) fluência e retração do concreto. Segundo a mesma norma brasileira, as ações variáveis podem ser agrupadas da seguinte forma: a) cargas móveis (cargas verticais, força centrífuga e efeitos dinâmicos, de frenagem e de aceleração); b) cargas de construção; c) cargas de vento; d) empuxo de terra (provocados por cargas móveis); e) pressão de água em movimento; f) variação de temperatura. Por fim, as cargas excepcionais são divididas em: a) choque de objetos móveis (colisão em pilares e em elementos do tabuleiro); b) outras (explosões, sismos, ventos e enchentes catastróficos).

Conforme a ABNT NBR 6118:2014 o peso específico considerado para os elementos de concreto simples é de 24kN/m³ e para os elementos de concreto armado ou protendido é de 25 kN/m³. Em conformidade com a ABNT NBR 7187:2003, na avaliação da carga devido à pavimentação, deve ser adotado o peso específico da pavimentação de no mínimo 24 kN/m³ e necessário prever uma carga adicional devido ao possível recapeamento com intensidade de 2 kN/m². As forças de protensão e suas respectivas perdas, devem ser consideradas de acordo com os princípios dispostos na ABNT NBR 6118:2014.

Carga móvel é o sistema de cargas verticais que representa os valores característicos dos carregamentos provenientes do tráfego que a estrutura está sujeita em serviço, constituído por um veículo tipo. Ao redor dessa, cargas uniformemente distribuídas são também consideradas na superestrutura. Os valores característicos de carga móvel rodoviária e em passarela são definidos na ABNT NBR 7188:2013, já os valores característicos de carga móvel ferroviária são definidos na ABNT NBR 7189:1985.

A ABNT NBR 7188:2013 classifica as pontes e viadutos rodoviários em função do peso total do veículo, 450 kN ou 240 kN. A Tabela 2.1 apresenta os valores característicos de carga móvel rodoviária padrão (classe 450) e carga móvel rodoviária de estrada vicinal municipal de uma faixa (classe 240).

Classe da ponte	Veículo		Multidão	
	Peso total (kN)	Carga por roda (kN)	Carga na pista (kN/m²)	Carga no passeio (kN/m²)
450	450	75	5	3
240	240	40	4	3

Tabela 2.1: Valores característicos de carga móvel rodoviária

Fonte: Adaptado de ABNT NBR 7188:2013

Conforme a ABNT NBR 7188:2013 a carga móvel de ponte de classe 450 é representada por um veículo de peso total de 450 kN, com seis rodas e 3 eixos afastados entre si em 1,5 m. Aplicado sobre todo o tabuleiro (pista de rolamento e acostamento) incide uma carga de multidão uniformemente distribuída com intensidade de 5 kN/m², exceto na área de projeção do veículo e passeios. A Figura 2.7 ilustra a disposição das cargas móveis estáticas, onde a carga concentrada P representa a carga por roda do veículo com intensidade de 75 kN e a carga distribuída p representa a carga de multidão aplicada sobre o tabuleiro.

O efeito dinâmico das cargas móveis é avaliado, de maneira global, com uso da amplificação da carga móvel vertical estática. Esse acréscimo é realizado por um coeficiente φ , denominado de coeficiente de impacto ou coeficiente de amplificação dinâmica, o qual não pode apresentar valor menor que 1. Segundo a ABNT NBR 7188:2013, o coeficiente de impacto nos elementos estruturais de pontes rodoviárias é determinado pelo produto dos coeficientes de impacto vertical (CIV), de número de faixas (CNF) e de impacto adicional (CIA), conforme expresso na Equação (2.1).

$$\varphi = \mathsf{CIV} \times \mathsf{CNF} \times \mathsf{CIA} \tag{2.1}$$

Onde:

 ϕ é o coeficiente de impacto;

CIV é o coeficiente de impacto vertical;

CNF é o coeficiente de números de faixas;

CIV é o coeficiente de impacto adicional.

Para estruturas com vão entre 10 e 200 m, o coeficiente de impacto vertical (CIV) pode ser obtido pela formulação apresentada na Equação (2.2). Para estruturas com vão superior a 200 m deve ser realizado estudo dinâmico específico para considerar a amplificação da carga estática.

$$CIV = 1 + 1,06 \left(\frac{20}{Liv + 50}\right)$$
(2.2)

Onde:

Liv é o comprimento do vão teórico do elemento analisado, em metros, sendo:

Liv é o comprimento do vão teórico para estruturas isostáticas;

Liv é a média aritmética dos vãos para o caso de estruturas contínuas;

Liv é o comprimento do próprio balanço para estruturas em balanço.

As cargas móveis estáticas também devem ser ajustadas pelo coeficiente de número de faixas (CNF), expresso pela Equação (2.3). Este coeficiente não se aplica aos elementos estruturais transversais ao sentido do tráfego, tais como transversinas e lajes.

$$CNF = 1 - 0,05(n - 2) \ge 0,90$$
 (2.3)

Onde:

n é o número (inteiro) de faixas de tráfego rodoviário. Acostamentos e faixas de segurança não são consideradas como sendo faixas de tráfego.

Os esforços provenientes das cargas móveis devem ser majorados pelo coeficiente de impacto adicional (CIA). Em obras de pontes de concreto o valor de CIA é definido em 1,25 e aplicado somente às seções dos elementos estruturais a uma distância horizontal inferior a 5 m de juntas estruturais e extremidades da obra.

2.1.4 Combinações de ações

Os critérios e valores de combinações de ações são indicados na ABNT NBR 8681:2003. No Estado Limite Último (ELU), para a combinação última normal (CN) de esgotamento da capacidade resistente dos elementos estruturais, as ações permanentes são ponderadas pelo coeficiente de ponderação γ_g de 1,35 para os casos com efeito desfavorável e γ_g de 1,00 para os casos com efeito favorável, as ações variáveis são majoradas pelo coeficiente de ponderação γ_q de 1,50, além da amplificação do efeito dinâmico pelo coeficiente de impacto φ . A combinação última normal (CN) é determinada a partir da Equação (2.4), com fator de combinação de ações ψ_0 de 0,70 para pontes rodoviárias.

$$F_{d,CN} = \sum \gamma_g F_{gk} + \gamma_q \left(F_{q1k} + \sum \psi_0 F_{qk} \right)$$
(2.4)

Onde:

F_{d,CN} é o valor de cálculo de ações devido à combinação última normal;

F_{gk} representa o valor característico de ações permanentes;

F_{qk} representa o valor característico de ações variáveis e F_{q1k} a variável principal;

 γ_g é o coeficiente de ponderação para ações permanentes;

γ_q é o coeficiente de ponderação para ações variáveis;

 ψ_0 é o fator de redução para combinação última normal.

No Estado Limite de Serviço (ELS), as ações permanentes são consideradas com seus valores característicos e as ações variáveis são ponderadas de acordo com fatores de redução. Para a combinação quase permanente de serviço (CQP), Equação (2.5), é aplicado o fator de redução ψ_2 de 0,30 para a variável principal de pontes rodoviárias. Para a combinação frequente de ações (CF), Equação (2.6), é aplicado o fator de redução ψ_1 de 0,50 para a variável principal de pontes rodoviárias. Para a combinação frequente de ações (CF), Equação (2.6), é aplicado o fator de redução ψ_1 de 0,50 para a variável principal de pontes rodoviárias. Para a combinação rara de serviço (CR), Equação (2.7), não é aplicado o fator de redução para a variável principal, ou seja, adota-se ψ de 1 para a variável principal.

$$F_{d,CQP} = \sum F_{gk} + \sum \psi_2 F_{qk}$$
(2.5)

$$F_{d,CF} = \sum F_{gk} + \psi_1 F_{q1k} + \sum \psi_2 F_{qk}$$
(2.6)

$$F_{d,CR} = \sum F_{gk} + F_{q1k} + \sum \psi_1 F_{qk}$$
(2.7)

Onde:

F_{d,CQP} é o valor de cálculo de ações devido à combinação quase permanente;

F_{d,CF} é o valor de cálculo de ações devido à combinação frequente de ações;

F_{d,CR} é o valor de cálculo de ações devido à combinação rara de serviço;

 ψ_1 e ψ_2 são os fatores de redução para ações variáveis.

A avaliação dos efeitos da fadiga em elementos de concreto armado, deve ser realizada na combinação frequente de fadiga, expressa pela Equação (2.8). De modo análogo as demais combinações de ações em serviço, as ações permanentes são consideradas com seus valores característicos e a ações variáveis são ponderadas por fatores de redução. Para longarinas de pontes rodoviárias, a ABNT NBR 8681:2003 recomenda o fator de redução $\psi_{1,fad}$ de 0,50 para a variável principal.

$$F_{d,FAD} = F_{gk} + \psi_{1,fad} F_{q1k} + \sum \psi_2 F_{qk}$$
(2.8)

Onde:

 $F_{d,FAD}$ é o valor de cálculo de ações devido à combinação frequente de fadiga; $\psi_{1,fad}$ é o fator de redução de ações variáveis para avalição dos efeitos de fadiga.

2.1.5 Métodos de distribuição de cargas

A carga móvel pode ocupar qualquer posição em planta do tabuleiro. Sendo assim, para cada longarina, é necessário posicionar o veículo normativo na posição mais desfavorável para a viga principal em estudo. Conforme El Debs e Takeya (2010), de forma simplificada, o comportamento estrutural pode ser analisado em duas etapas: a) distribuição de carga móvel na direção transversal; b) distribuição de cargas equivalentes (obtidas a partir da distribuição transversal) ao longo da direção longitudinal. O quinhão de cargas ou as cargas equivalentes, produtos da distribuição transversal de cargas, usualmente são também denominados de trem tipo.

O tabuleiro de uma ponte de concreto, usualmente é composto por vigas longitudinais, vigas transversais e lajes, que após a concretagem final formam um conjunto monolítico, cujo cálculo exato dos esforços é complexo e trabalhoso. Os esforços podem ser obtidos com auxílio de programas computacionais, a partir da modelagem do tabuleiro com elementos de barra, para cálculo de grelha, ou com elementos de barra e placa, para cálculo pelo método dos elementos finitos. Para a determinação dos esforços de maneira manual, são empregados processos aproximados, conhecidos como métodos de repartição de cargas. Entre os diversos processos aproximados, podem ser destacados os processos de: Leonhardt, Courbon/Engesser, Fauchart e Guyon/Massonet (EL DEBS; TAKEYA, 2010).

Para pontes com superestrutura formada por duas vigas de seção aberta, usualmente a distribuição transversal de cargas é realizada, de maneira simplificada, considerando vigas independentes. Conforme observado por Pfeil (1979), a partir de linhas de influência é possível definir as posições mais desfavoráveis para aplicação da carga móvel, que consequentemente determinam os esforços críticos, máximos e mínimos, na seção de análise. É denominada linha de influência de uma solicitação S_s, de uma seção S qualquer, uma linha cujas ordenadas correspondem aos valores de S_s em função de uma carga unitária em diversas posições. A Figura 2.8 apresenta a linha de influência de reação de apoio da seção transversal, para tabuleiro típico composto por duas vigas principais e laje bi-apoiada com dois balanços.

Para pontes de seção com vigas múltiplas, o processo simplificado é realizado de forma similar à de seção com duas vigas, a distribuição transversal de cargas é realizada a partir da construção de linhas de influência de reação nas longarinas, porém nesta situação a estrutura é hiperestática. Segundo Stucchi (2006), as pontes com vigas múltiplas inicialmente eram compostas por transversinas muito rígidas, com o objetivo de distribuir adequadamente as cargas para as longarinas, constituindo grelhas. Posteriormente, foi constatado que as lajes

de pontes apresentavam rigidez suficiente para garantir uma satisfatória distribuição transversal de cargas, o que sugeriu a eliminação de transversinas intermediárias.

Figura 2.8: Linha de influência de reação de apoio da seção transversal com 2 vigas

Fonte: Adaptado de Pfeil (1979)

A aplicação do processo de Courbon/Engesser é recomendada para pontes com transversinas intermediárias e nos apoios, caso usual de pontes em grelha. Neste processo é desprezado o efeito de torção nas longarinas e as transversinas são consideradas como infinitamente rígidas. A solução do problema de barra rígida sobre apoios elásticos apenas na vertical é obtida a partir da equação da linha elástica e realizando o equilíbrio de forças verticais e de momentos em torno de centro elástico (CE). Deste modo é determinado o valor da reação R_{ij} da viga i para uma carga unitário na posição j, conforme ilustrado na Figura 2.9 e expresso pela Equação (2.9). Para tabuleiro composto por vigas de mesma inércia, a solução do problema é simplificada e apresentada na Equação (2.10) (STUCCHI, 2006).

Fonte: Adaptado de Stucchi (2006)

$$R_{i,j} = I_{c,i} \left(\frac{1}{\sum I_{c,i}} + \frac{e_j x_i}{\sum (I_{c,i} x_i^2)} \right)$$
(2.9)

$$R_{i,j} = \frac{1}{n} + \frac{e_j x_i}{\sum x_i^2}$$
(2.10)

Onde:

R_{ij} é a reação de apoio da viga i para uma carga unitária na posição j;

Ic,i é o momento de inércia da seção bruta de concreto da viga i;

ej é a distância da carga unitária em relação ao centro elástico (CE);

xi é a distância da viga i em relação ao centro elástico (CE);

n é o número de apoios (vigas).

A aplicação do processo de Fauchart é recomendada para pontes com ausência de transversinas intermediárias e com presença de apenas transversinas nos apoios, caso usual de pontes em vigas com elementos de concreto pré-moldado. Neste processo é considerado o efeito de torção nas longarinas, estas biapoiadas e de inércia constante. A solução do problema de apoio elástico vertical com torção é obtida a partir do equilíbrio estático e considerando os conceitos da mecânica dos materiais. Deste modo são determinados os parâmetros de rigidez que representam as longarinas para uma faixa unitária de 1 m de laje, conforme ilustrado na Figura 2.10. O valor da constante de mola vertical k_{fi} é apresentado na Equação (2.11) e o valor da constante mola à rotação k_{ti} é apresentado na Equação (2.12) (STUCCHI, 2006).

Figura 2.10: Esquema estático do processo de Fauchart

Fonte: Adaptado de Stucchi (2006)

$$\mathbf{k}_{\mathsf{f},\mathsf{i}} = \left(\frac{\pi}{\ell}\right)^4 \mathsf{E}_{\mathsf{cs},\mathsf{i}} \ \mathsf{I}_{\mathsf{c},\mathsf{i}} \tag{2.11}$$

$$\mathbf{k}_{t,i} = \left(\frac{\pi}{\ell}\right)^2 \mathbf{G}_c \ \mathbf{I}_{t,i} \tag{2.12}$$

Onde:

 $k_{f,i}$ é a constante de mola vertical da viga i;

k_{t,i} é a constante de mola à rotação da viga i;

l é o comprimento do vão teórico da viga i;

Ecs,i é o módulo de deformação secante do concreto da viga i;

G_c é o módulo de deformação transversal do concreto da viga i;

Ic,i é o momento de inércia da seção bruta de concreto da viga i;

 $I_{t,i}$ é o momento de inércia à torção da seção bruta de concreto da viga i;

Em conformidade com a ABNT NBR 6118:2014, o módulo de deformação transversal do concreto G_c pode ser obtido por meio da Equação (2.13).

$$G_{c} = \frac{E_{cs,i}}{2(1+\nu)}$$
(2.13)

Onde:

v é o coeficiente de Poisson do concreto.

2.2 CONCRETO PRÉ-MOLDADO

2.2.1 Considerações gerais

Conforme Elliott (2016), diferentemente da forma de execução do concreto moldado no local (CML), o concreto pré-moldado (CPM), armado ou protendido, é aquele que foi preparado para a moldagem, concretagem e cura em um local fora do seu destino final. A distância percorrida do local de concretagem até o destino final pode ser de alguns metros, procedimento usualmente adotado para evitar custos elevados de transporte, ou pode ser de centenas de quilômetros, adotado para os casos de produtos de alto valor agregado e elevados custos de fabricação. Entretanto, a distinção se torna mais significativa quando é avaliado o comportamento estrutural das estruturas de CML e CPM.

A ABNT NBR 9062:2017 define elemento pré-fabricado, como aquele "[...] elemento pré-moldado executado industrialmente, em instalações permanentes de empresa destinada para este fim, que se enquadrem e estejam em conformidade com as especificações" quanto ao controle de qualidade e à inspeção das etapas de produção, transporte e montagem, com o uso de mão de obra treinada e especializada. O elemento pré-moldado, é definido como aquele "[...] elemento moldado previamente e fora do local de utilização definitiva na estrutura", com controle de qualidade menos rigoroso que o elemento pré-fabricado.

De acordo com Elliott e Jolly (2013), um elemento de concreto pré-moldado é, por definição, de tamanho finito e, portanto, deve ser conectado a outros elementos para formar uma estrutura completa. Uma estrutura de CPM é um conjunto de elementos pré-moldados que, quando conectados adequadamente, forma uma estrutura capaz de resistir às ações gravitacionais e horizontais. Ideal para edifícios que exijam mínima obstrução interna e espaço multifuncional. A Figura 2.11 ilustra dois exemplos de aplicação de CPM em edifícios de múltiplos pavimentos. No exemplo europeu é apresentada a fase de construção de um edifício de 5 pavimentos, constituído por elementos retilíneos com ligações simples do tipo articulada. Já o exemplo nacional ilustra a fase de construção de um edifício com ligações entre pilar e viga do tipo semi-rígida.

Figura 2.11: Exemplos de sistemas estruturais em concreto pré-moldado

(a) etapa de construção do Europark em Roma com ligações articuladas

(b) etapa de construção de Universidade em Recife com ligações semi-rígidas

Fonte: ELLIOTT (2016)

Os elementos pré-moldados de uso mais comum no Brasil, de acordo com El Debs (2017), são: a) lajes e fechamentos: painel maciço e vazado, painel alveolar, painel π , painel \Box e telha w; b) vigas e pilares: seção retangular maciça e vazada, seção I, seção L, seção T normal e invertido. Os elementos de concreto pré-moldado podem ser empregados em praticamente toda a construção civil, com a função estrutural ou somente de fechamento, com destaque para edifícios residenciais, comerciais, industriais e institucionais, pontes, galerias, reservatórios e equipamentos urbanos.

O emprego do concreto pré-moldado acompanhou a evolução do concreto armado e protendido. Os primeiros elementos de concreto armado foram pré-moldados: o barco de Lambot em 1848 e os vasos de Monier em 1849. O grande impulso de evolução e de aplicação da tecnologia do concreto pré-moldado ocorreu no período após a Segundo Guerra Mundial, onde a Europa encontrava-se destruída e devastada. A necessidade de reconstrução rápida em larga escala, a escassez de mão de obra e o desenvolvimento do concreto protendido, estimularam o avanço intensivo da industrialização e racionalização na Construção Civil. O desenvolvimento do concreto pré-moldado foi concentrado inicialmente na Europa Ocidental e posteriormente na Europa Oriental, com a construção principalmente de habitações, galpões e pontes (EL DEBS, 2017).

Segundo Vasconcelos (2002), a primeira grande obra com utilização de elementos pré-fabricados no Brasil foi o Hipódromo da Gávea, no Rio de Janeiro, construído em 1926 pela construtora dinamarquesa Christiani-Nielsen. Dentre os elementos pré-moldados utilizados na obra, cabe destacar as estacas de fundação executadas no próprio canteiro de obras, que na época estabeleceram o recorde sul-americano devido a quantidade total executada de 8 km de comprimento. Com o intuito de não alongar o tempo de construção, na execução das estacas foi utilizado um cimento Portland dinamarquês de endurecimento rápido, deste modo foi possível alcançar a resistência à compressão do concreto aos 28 dias em apenas 3 dias.

Ainda de acordo com Vasconcelos (2002), na década de 50 na cidade de São Paulo, a Construtora Mauá executou vários galpões com elementos pré-moldados no próprio canteiro de obras, com destaque para a construção em apenas 14 meses do Cortume Franco-Brasileiro em Barueri, com área total de construção de cerca de 35.000 m². A estrutura de concreto pré-moldado dos pavilhões é composta por pilares e vigas de cobertura Vierendel curva. Contratualmente a obra deveria ser entregue em 24 meses, sujeita a severas multas no caso de não-cumprimento do prazo. O encurtamento do prazo foi possível devido ao uso da pré-moldagem no canteiro de obras, executada simultaneamente com as fundações. No período, os proprietários do Cortume Franco-Brasileiro ficaram surpreendidos com o resultado superior ao previsto. Os reflexos da racionalização e da industrialização de sistemas construtivos, foram sentidos no Brasil no final da década de 50 e na década de 60, quando houve o impulso para o emprego de elementos pré-moldados de concreto no país. A industrialização progressiva dos processos executivos da Construção Civil é uma tendência irreversível no Brasil, a exemplo do que já ocorreu nos países da Europa e América do Norte. A procura de simplicidade construtiva com velocidade de execução, ao lado de padronização de elementos e modelo de projeto modular, simples e realista, é uma necessidade para a maior qualidade do produto final e a competitividade (MELO, 2007).

Conforme o manual projetando com concreto pré-moldado e protendido do PCI (2006), as principais vantagens do uso do sistema construtivo em concreto pré-moldado são:

- velocidade de construção: capacidade de execução de atividades em paralelo, como por exemplo a execução ao mesmo tempo da infraestrutura moldada no local e a superestrutura pré-moldada;
- alta qualidade: resultante do maior controle de qualidade do processo fabril em conjunto com o emprego de fôrmas de alta qualidade e de maior reutilização;
- alta produtividade: resultante da facilidade de produção (fôrma, armadura e concretam) e montagem de elementos padronizados, em conjunto com o emprego de mão de obra treinada e especializada;
- flexibilidade de layout: possibilidade de oferecer maior ambiente interno, devido a capacidade de vencer maiores vãos com uso da protensão e melhor aproveitamento das seções resistentes;
- capacidade de expansão: construção da edificação com a possibilidade de futura expansão horizontal;
- flexibilidade estética: variedade de texturas, cores e acabamento;
- sustentabilidade: contribuição para obtenção de construção verde, por meio de certificado LEED (*Leadership in Energy and Environmental Design*) da USGBC (*United States Green Building Council*).

De acordo com El Debs (2017), as principais desvantagens, especialmente em decorrência da montagem dos elementos de concreto pré-moldado no local definitivo de utilização da edificação, são:

 ligações: necessidade de promover a ligação entre os elementos da estrutura, com ligações mais simples, do tipo articulada, ou mais trabalhosas e onerosas, do tipo semirrígidas, que procuram reproduzir o monolitísmo das estruturas de concreto moldado no local;

- equipamentos de movimentação: necessidade de equipamentos para içamento e movimentação na unidade fabril e equipamentos para transporte e montagem no local de uso definitivo;
- limitação de transporte: acondicionado a limitação de gabarito no transporte e condição de acesso ao local para montagem dos elementos pré-moldados no local definitivo de utilização.

2.2.2 Seções transversais

Conforme exposto por El Debs (2017), os elementos de concreto pré-moldado são projetados de forma a minimizar o consumo de materiais e, consequentemente, o peso dos elementos. A forma da seção transversal é a principal variável para a redução de consumo de materiais. A análise da forma da seção transversal de elementos de concreto pré-moldado (CPM), submetidos predominantemente à flexão, pode ser realizada em função do rendimento mecânico da seção transversal. O rendimento mecânico depende somente da geometria da seção transversal e é definido pela Equação (2.14). A Figura 2.12 ilustra a variação do rendimento mecânico de seções transversais típicas de elementos de CPM.

Figura 2.12: Rendimento mecânico de seções transversais típicas de CPM

Fonte: Adaptado de Koncz¹ (1966) apud El Debs (2017)

¹ KONCZ, T. Handbuch der fertigteibauweise. Berlin: Bauverlag GmbH, 1966.

$$r = \frac{I_c}{y_1 \ y_2 \ A_c}$$
(2.14)

Onde:

r é o coeficiente de rendimento mecânico da seção transversal;

Ic é o momento de inércia da seção bruta de concreto;

A_c é a área da seção transversal bruta de concreto;

y1 e y2 são as distâncias das extremidades em relação ao centro geométrico da seção.

Segundo o manual de pontes de concreto pré-moldado da FIB (2004), as principais seções transversais de vigas aplicadas em obras de pontes na Europa são: seção T invertido, seção I, seção u e seção fechada unicelular (caixão). A Figura 2.13 ilustra os cortes transversais da superestrutura do tabuleiro europeu, com as principais seções transversais de vigas. Nessa Figura, os elementos pré-fabricados (vigas e pré-lajes) são representados com hachura e os elementos moldados no local (solidarização da laje do tabuleiro) com sombreado.

Figura 2.13: Elementos pré-fabricados aplicados em pontes na Europa

(a) seção T invertido

(c) seção ц

(b) seção I

(d) seção caixão

Fonte: Adaptado de FIB (2004)

De acordo com o manual de projeto de pontes do PCI (2011), as principais seções transversais de vigas aplicadas em obras de pontes nos Estados Unidos são: seção I, seção *bulb-tee*, seção π , seção \sqcup e seção fechada unicelular (caixão). A Figura 2.14 ilustra as principais seções transversais de vigas conforme o padrão AASHTO (*American Association*)

of State Highway and Transportation Officials). Bulb-tee é a denominação americana para a seção com a mesa superior larga e a mesa inferior compacta em forma de bulbo. Com uso das seções I, *bulb-tee*, \sqcup e caixão, o tabuleiro pode ser formado por elementos pré-moldados dispostos espaçadamente ou justapostos. A seção caixão segmentado é utilizada principalmente em pontes com processo construtivo da superestrutura em balanços sucessivos.

Figura 2.14: Elementos pré-fabricados aplicados em pontes nos Estados Unidos

Fonte: Adaptado de PCI (2011)

Outras seções transversais de longarinas podem ser aplicadas em obras de pontes, tal como a seção *wide-flange*, desenvolvida recentemente pelo CALTRANS (*California Department of Transportation*) e produtores de pré-fabricados da Califórnia. A seção wide-flange é constituída por mesa inferior e superior de maior eficiência, que permite o alojamento de cerca de 20% a mais de cordoalhas na mesa inferior que a seção *bulb-tee* e fornece maior estabilidade ao elemento durante o transporte e montagem. A Figura 2.15 apresenta as seções transversais da vigas *wide-flange* e *bulb-tee* conforme padrão CALTRANS. Ambas as seções podem ser produzidas com pré-tração e pós-tração. A seção *bulb-tee* da Califórnia é uma variação da seção *bulb-tee* padronizada pelo AASHTO, com a inclusão de cantos levemente arredondados entre a alma e as mesas inferior e superior (CALTRANS, 2015).

Fonte: Adaptado de CALTRANS (2015)

2.3 CONCRETO DE ULTRA-ALTO DESEMPENHO

2.3.1 Considerações gerais

O comitê ACI 239:2012 propõe a definição de concreto de ultra-alto desempenho (CUAD), como aquele material de "[...] concreto que possui resistência à compressão mínima de 150 MPa, com requisitos mínimos de durabilidade, elasticidade, ductilidade e tenacidade". Para alcançar os requisitos especificados, usualmente são adicionadas fibras nas matrizes cimentícias. De acordo com o relatório FHWA-HRT-13-060, fornecido pelo *U.S. Department of Transportation – Federal Highway Administration* (2013), FHWA, o concreto de ultra-alto desempenho (CUAD) apresenta resistência à tração entre 20 a 50 MPa e resistência à compressão entre 150 a 250 MPa, superando a marca de 120 MPa do concreto de alto desempenho (CAD).

Conforme Perry, Parsekian e Shrive (2017), o CUAD é usualmente composto por areia muito fina (<400 µm), pó de quartzo moído, cimento Portland, sílica ativa, aditivos e 2% de fibras, usualmente microfibras metálicas com comprimento de 12 mm e diâmetro de 0,2 mm. Devido à baixa porosidade e baixa permeabilidade, o material apresenta alta durabilidade e consequentemente resultando em estruturas com pouca manutenção. Sua alta resistência permite menor comprimento de traspasse da armadura. O CUAD, devido as características supracitadas, permite o seu uso em elementos leves e delgados, aplicado com mais frequência em elementos pré-moldados protendidos, em ligações com concretagem no local e na recomposição de estruturas deterioradas.

De acordo com Carnio (2017), as fibras utilizadas em elementos de concreto são divididas conforme a origem do material: metais, cerâmicos e polímeros sintéticos ou naturais. As fibras metálicas de aço carbono são as mais utilizadas em elementos de CUAD e contemplam grande variedade geométrica. As fibras cerâmicas mais comuns em elementos de concreto são as de vidro, carbono e asbesto, também conhecido como amianto. As fibras poliméricas sintéticas mais comuns são as de polipropileno (material termoplástico), polietileno e poliamida, também conhecido como náilon. O uso de fibras vegetais é comum em elementos de gesso, porém em materiais cimentícios não obteve sucesso, devido a rápida degradação dos compostos ocasionada pela elevada alcalinidade da água nos poros da matriz de cimento.

De acordo com o relatório FHWA-HRT-13-060 do FHWA (2013), a adição de fibras metálicas no concreto de ultra-alto desempenho (CUAD) garante o seu comportamento dúctil, desta forma permite dispensar o uso de armadura passiva, especialmente em elementos protendidos sob flexão. Com o uso do CUAD também é permitido dispensar o uso de armadura transversal, desta forma o cisalhamento é resistido integralmente pelo CUAD. Em

elementos pré-moldados de CUAD com seção composta, para garantir a ligação entre o elemento pré-moldado com o moldado no local, a armadura transversal é utilizada apenas com função de conector de cisalhamento.

2.3.2 Aplicação

Conforme o relatório FHWA-HRT-13-060 do FHWA (2013), o custo inicial do CUAD excede em muito o custo do concreto convencional. Consequentemente as aplicações tem como objetivo otimizar o seu uso, por meio da modificação e da redução da seção transversal dos elementos de concreto. Conforme já explanado, o produto apresenta alta durabilidade, deste modo, é esperado que as estruturas apresentem maior vida útil e exijam menor manutenção, quando comparadas com as estruturas de concreto convencional.

Em 2000 nos Estados Unidos, o CUAD é disponibilizado por algumas empresas para o mercado consumidor, como por exemplo o Ductal®, desenvolvido e patenteado pela cimenteira LafargeHolcim. Desde 2001 o *U.S. Department of Transportation – Federal Highway Administration* trabalha com pesquisas sobre o uso de CUAD nas obras de infraestrutura rodoviária. Esse trabalho de pesquisa levou o uso de CUAD a várias aplicações em pontes, com destaque para vigas pré-moldadas protendidas, painel pré-moldado nervurado e como material de ligação entre elementos pré-moldados (FHWA, 2013).

De acordo com Blais e Couture (1999), a primeira utilização CUAD foi em 1997 no Canadá, com a construção de uma passarela com vão de 60 m na cidade de Sherbrooke (Figura 2.16). A superestrutura da passarela é composta por tabuleiro com espessura de apenas 3 cm e por treliça espacial com altura de 3,00 m. A treliça espacial é formada por banzos de CUAD com resistência à compressão de 200 MPa e por diagonais em tubos de aço inoxidável (diâmetro de 15 cm) preenchidos sob pressão com CUAD de resistência à compressão de 350 MPa. A fabricação da estrutura foi segmentada em 6 módulos prémoldados, com comprimento de 10 m e largura de 3,3 m. A solidarização dos elementos prémoldados foi realizada mediante o uso da pós-tração.

Em 2006, no Condado de Wapello nos Estados Unidos, foi construída a primeira ponte rodoviária rural com uso de CUAD, a ponte Mars Hill com vão de 33 m, ilustrada na Figura 2.17. A superestrutura da ponte é composta por três vigas pré-fabricadas com CUAD, de seção transversal *bulb-tee* com altura de 115 cm, e tabuleiro moldado no local com concreto convencional, de espessura de 20 cm e largura total de 7,5 m. As longarinas foram produzidas com 49 cordoalhas de aço de protensão com diâmetro de 15,2 mm e com ausência de armadura passiva de flexão e de cisalhamento. Ao longo da face superior das longarinas pré-moldadas foram posicionados conectores de cisalhamento em forma de U para garantir a

ligação com o tabuleiro moldado no local. Anterior a fase de construção da ponte, vigas em escala real foram ensaiadas na Iowa State University para avaliar o comportamento ao cisalhamento e à flexão (ENDICOOT, 2007).

Figura 2.16: Passarela Sherbrooke com treliça espacial de CUAD

Fonte: Lafarge (2009)

Figura 2.17: Ponte Mars Hill com longarinas de CUAD

(a) ponte rodoviária em Iowa com vão de 33 m

(b) transporte de viga isostática protendida

Fonte: Endicott (2007)

Em 2011, no Condado de Wapello em Iowa, foi construída a primeira ponte rodoviária com todo o tabuleiro em CUAD, a ponte Little Cedar Creek com vão de 18 m e largura de 10 m. A Figura 2.18 ilustra as diferentes fases de construção da ponte Litte Cedar Creek. A superestrutura da ponte é composta por 5 vigas protendidas espaçadas a cada 2,23 m e 14 painéis nervurados, ambos pré-fabricados com CUAD. A seção transversal da superestrutura da ponte é composta por dois painéis nervurados, conectados na linha central da ponte e apoiados sobre as 5 vigas. Cada painel nervurado foi produzido com 20 cm de espessura,

dimensões em planta de 2,40x4,60m² e com nichos de cisalhamento para concretagem no local. Todas as ligações entre painéis adjacentes e painéis com vigas foi utilizado o CUAD. O tabuleiro pré-moldado em CUAD é a própria pista de rolamento (FHWA, 2013).

Figura 2.18: Ponte Little Cedar Creek com tabuleiro de CUAD

(a) vista superior do tabuleiro pré-moldado durante a fase de construção

(b) vista inferior do tabuleiro nervurado após a fase de construção da ponte

Fonte: Lafarge (2016)

Devido às características de desempenho já apresentadas, o CUAD pode ser utilizado em diversas aplicações estruturais, tais como: pontes e viadutos; barragens; torres eólicas; túneis; pré-moldados; e reforço estrutural. Devido a granulometria utilizada, o CUAD permite reproduzir texturas com precisão e pode ser utilizado com pigmentação, para utilização em diversas aplicações arquitetônicas, como: painéis de fachada; fachadas perfuradas; brises; marquises; coberturas leves; e cobogós. O CUAD começa a se destacar mundialmente, através de sua aplicação em diversas obras, com destaque para as utilizações na América do Norte (Estados Unidos e Canadá), Japão e Europa (principalmente na França, Alemanha e Suiça). Em 2016, foi realizada a primeira obra no Brasil com a utilização de CUAD, fachada em painel arquitetônico do Ministério das Relações Exteriores em São Paulo (MULLER; KOELLE; ALMEIDA, 2017).

2.4 CONCRETO PROTENDIDO

2.4.1 Considerações gerais

Segundo Leonhardt (1983), a deficiente resistência à tração do concreto fez com que se buscasse colocar sob compressão as zonas tracionadas das seções de elementos em concreto, através de uma força de protensão P aplicada excentricamente na seção transversal. Desse modo, as tensões de compressão provenientes da protensão tendem a reduzir ou anular as tensões de tração no concreto, originadas de seu peso próprio e de ações atuantes, conforme exemplificado na Figura 2.19a para a situação de viga isostática com armadura ativa retilínea e excêntrica ao eixo longitudinal da peça de concreto.

Conforme Beer *et al.* (2015), a força de protensão P aplicada excêntrica ao centro geométrico CG da seção transversal da peça de concreto é estaticamente equivalente a uma força normal de protensão N_p e a um momento isostático de protensão M_p (Figura 2.19b), em razão dos princípios de Saint-Venant e da superposição. Esse momento isostático de protensão é o produto da força de protensão P pela excentricidade de protensão e_p. O momento isostático de protensão M_p comprime as fibras localizadas abaixo do CG da peça de concreto e traciona as fibras acima do CG da peça de concreto, conforme pode ser observado na Figura 2.19c. A convenção de sinais adotada utiliza valores negativos para tensões de compressão e positivos para tensões de tração.

Figura 2.19: Efeitos da protensão e tensões nas bordas da seção de meio do vão

(a) esquema de viga isostática protendida

(b) equivalência estática dos efeitos da protensão

(c) tensões nas bordas da seção de meio do vão

Fonte: Adaptado de Leonhardt (1983)

Conforme observado por Pfeil (1984), as tensões normais σ nas bordas da seção de concreto podem ser obtidas em regime elástico-linear (Estádio I), considerando o material homogêneo e isotrópico e adotando as hipóteses de Bernoulli (a seção plana da seção

transversal permanece plana após a deformação por flexão) e Navier (as tensões normais são proporcionais à distância à fibra neutra). As tensões normais na fibra superior σ_2 e na fibra inferior σ_1 , determinadas pelo método clássico, são expressas pelas Equações (2.15) e (2.16) respectivamente, para a seção de meio do vão representada na Figura 2.19c. As tensões normais σ_2 e σ_1 são comprimidas e tracionadas pelo carregamento g+q, respectivamente.

$$\sigma_2 = -\frac{N_p}{A_c} + \frac{M_p}{W_{c,2}} - \frac{M_{g+q}}{W_{c,2}}$$
(2.15)

$$\sigma_{1} = -\frac{N_{p}}{A_{c}} - \frac{M_{p}}{W_{c,1}} + \frac{M_{g+q}}{W_{c,1}}$$
(2.16)

Onde:

 σ_2 e σ_1 são as tensões normais na fibra superior e inferior da seção de concreto;

N_p é o esforço normal de protensão;

M_p é o momento isostático de protensão;

M_{g+q} é o momento solicitante devido ao peso próprio e demais ações atuantes;

Ac é a área da seção transversal bruta de concreto;

 $W_{c,2}$ e $W_{c,1}$ são os módulos resistentes à flexão da seção de concreto em relação à fibra superior e inferior.

Os módulos resistentes à flexão da seção transversal são obtidos a partir de relações geométricas da seção transversal, expressas pelas Equações (2.17) e (2.18).

$$W_{c,2} = \frac{I_c}{y_2}$$
 (2.17)

$$W_{c,1} = \frac{I_c}{y_1}$$
 (2.18)

Onde:

Ic é o momento de inércia da seção bruta de concreto;

y₁ é a distância da fibra inferior em relação ao centro geométrico da seção transversal;
 y₂ é a distância da fibra superior em relação ao centro geométrico da seção transversal.

A Figura 2.20 exemplifica o comportamento de uma viga isostática em concreto armado em comparação com uma viga isostática em concreto protendido. Na Figura 2.20a é ilustrado a viga em concreto armado na posição deformada e com seção fissurada devido as ações gravitacionais atuantes. As fissuras na zona tracionada ocorrem devido a deficiente resistência à tração do concreto, na ordem de 10% da resistência à compressão. Em vigas de concreto armado, sujeitas a esforços de flexão, as tensões de compressão são resistidas pelo concreto e as tensões de tração pela armadura passiva.

A Figura 2.20b apresenta a viga em concreto protendido na posição deformada (contraflecha), devido a aplicação da força de protensão P excêntrica ao centro geométrico da seção transversal do elemento estrutural. Nessa etapa inicial, usualmente denominada de ato de protensão, sobre o elemento estrutural incide apenas as ações devido à protensão e ao seu peso próprio. A Figura 2.20c ilustra o estágio final da viga em concreto protendido com seção transversal íntegra, devido ao equilibro das tensões de tração em razão da aplicação da compressão. Pode ser observado na Figura 2.20c que a viga em concreto protendido não apresenta flecha final, deste modo é praticamente eliminada a flecha diferida ao longo do tempo.

Figura 2.20: Comportamento de viga isostática em concreto armado e protendido

Fonte: Adaptado de FHWA-NHI-13-026 (2013)

2.4.2 Sistemas de protensão

A protensão, de acordo com Pfeil (1984), é atingida mediante a utilização de barras ou cabos de aço de alta resistência, tracionados e ancorados no concreto. Cordoalhas, fios e seus agrupamentos em cabos de aço, são denominadas armaduras de protensão. Em função do sistema construtivo e do modo como a força de protensão, durante a fase de construção, é aplicada na seção de concreto, os elementos em concreto protendido podem ser classificados em elementos pré-tracionados ou pós-tracionados.

Conforme Hanai (2005), o sistema de pré-tração é utilizado em indústrias, onde a concretagem é realizada em instalações fixas, denominadas pistas de protensão. Conforme exemplificado na Figura 2.21, o sistema consiste em armaduras posicionadas longitudinalmente na pista de protensão (Figura 2.22), com comprimentos típicos entre 80 e 120 m, as quais são fixadas nas extremidades por meio de dispositivos mecânicos. Durante a operação de protensão, uma extremidade é fixa e a outra extremidade livre, possibilitando esticar os cabos com o auxílio de atuadores hidráulicos (macacos) para aplicação da protensão (Figura 2.23), até alcançar a força desejada. Por meio de calços e cunhas as armaduras esticadas são fixadas nos elementos de ancoragem nas extremidades. O concreto é lançado dentro das formas, envolvendo as armaduras estiradas e permitindo a aderência posterior. Após a cura do concreto e atingida a resistência mínima necessária, é retirado parte do alongamento aplicado nas armaduras e a seguir estas são cortadas junto às faces do concreto. O encurtamento das armaduras é impedido pela aderência com o concreto, resultando em elementos protendidos.

Figura 2.21: Esquema simplificado do sistema com armadura pré-tracionada

Fonte: Adaptado de Hanai (2005)

Figura 2.22: Pista de protensão em indústria de pré-fabricados de concreto

(a) fabricação de lajes alveolares

(b) fabricação de viga I

Fonte: Migliore (2008)

Figura 2.23: Equipamentos de protensão em indústria de pré-fabricados de concreto

(a) atuador hidráulico (macaco) de protensão

(b) manômetro do atuador hidráulico

Fonte: Migliore (2008)

As principais vantagens do uso do sistema de pré-tração são: a) ausência de bainhas metálicas, ancoragens permanentes e injeção de calda de cimento; b) não há perda por atrito ao longo do cabo; c) ideal para indústria de pré-fabricados. As principais desvantagens deste sistema são: a) cabos de protensão exclusivamente retos ou poligonais; b) necessidade de cabeceiras ou formas muito rígidas (MIGLIORE JUNIOR, 2017).

Segundo Pfeil (1984), o sistema com armadura pós-tracionada é mais utilizado quando a protensão é realizada no campo. Nesse sistema, a operação de protensão é realizada após o ganho de resistência do concreto. O concreto é lançado em formas e são colocadas as cordoalhas de aço no interior de bainhas metálicas ou utilizadas cordoalhas previamente engraxados e envolvidos por bainha plástica. Após o concreto atingir resistência suficiente, os cabos são esticados pelas extremidades até atingirem o alongamento desejado. Em seguida, os cabos são ancorados nas faces do concreto com dispositivos mecânicos, aplicando assim a força de compressão ao concreto. A Figura 2.24 apresenta a fase de alongamento de cabos aderentes com auxílio de atuador hidráulico e detalhe do sistema de ancoragem em elemento pré-moldado de canteiro de obras.

Figura 2.24: Equipamentos de protensão em elemento pré-moldado de concreto

(a) atuador hidráulico de protensão

(b) cabos fixados em placas de ancoragem

Fonte: Autor

Conforme observado por Emerick (2005), em função da aderência entre o aço de protensão e o concreto, o sistema de pós-tração pode ser classificado em aderente e não aderente. No sistema com protensão aderente, após o estiramento dos cabos, é injetada nata de cimento dentro das bainhas metálicas, as quais abrigam as cordoalhas. A Figura 2.25 ilustra as bainhas metálicas em detalhe e as mesmas posicionadas durante a fase de montagem da armadura da viga pré-moldada em canteiro de obra de pontes. No sistema não aderente, as cordoalhas ficam envolvidas por uma camada de graxa especial e bainhas de PEAD (polietileno de alta densidade), permitindo o movimento livre da cordoalha no seu interior.

Figura 2.25: Bainha metálica utilizada no sistema com pós-tração aderente

(a) bainhas metálicas galvanizadas

(b) bainhas posicionadas durante a etapa de montagem da armadura da viga pré-moldada

Fonte: Autor

As principais vantagens do uso do sistema de pós-tração aderente são: a) o cabo pode apresentar forma geométrica otimizada; b) aplicação em campo ou com elementos prémoldados; c) ideal para grandes vãos e cargas elevados, por exemplo para aplicação em Obras de Arte Especiais (OAE). As principais desvantagens deste sistema são: a) maiores perdas ao longo do cabo; b) atuador hidráulico de protensão com grande potência; c) necessários cuidados especiais durante a etapa de injeção de calda de cimento (MIGLIORE JUNIOR, 2017).

As principais vantagens do uso do sistema de pós-tração não aderente são: a) facilidade de montagem devido a leveza dos cabos, acessórios e equipamentos; b) aplicação em campo para peças esbeltas; c) viabilidade econômica para aplicação em estruturas leves, por exemplo para aplicação em edifícios residenciais e comerciais. As principais desvantagens deste sistema são: a) utilização de muitos cabos devido as cordoalhas apresentarem pequena área de aço na seção transversal; b) ausência de aderência possibilita o aumento da fissuração; c) ruptura local de um cabo elimina sua ação ao longo de todo comprimento (MIGLIORE JUNIOR, 2017).

De modo a diferenciar as cordoalhas engraxadas de aço CP-190 RB e CP-210 RB, a indústria nacional utiliza bainhas de PEAD (polietileno de alta densidade), de espessura mínima de 1 mm, com cores padronizadas azul e laranja. As cordoalhas engraxadas de aço CP-190 RB são envolvidas por bainhas de PEAD na cor azul e as de aço CP-210 RB por bainhas de PEAD na cor laranja, como pode ser observado na Figura 2.26b. A Figura 2.27 ilustra a fase de montagem de laje lisa com cordoalhas não aderentes.

Figura 2.26: Fio, cordoalha nua e engraxada de aço de protensão

(a) fio de aço CP-175 RB e cordoalha nua de 3 e 7 fios de aço CP-190 RB (esq. para dir.) (b) cordoalha engraxada de CP-190 RB e CP-210 RB com bainha de PEAD (esq. para dir.)

Fonte: Autor

Figura 2.27: Montagem de laje lisa com cordoalha engraxada de aço CP-190 RB

Fonte: Nogueira et al. (2013)

2.4.3 Níveis de protensão e Estados Limites

Conforme Cholfe e Bonilha (2016), os elementos estruturais em concreto armado e protendido, devem ser projetados e executadas de tal modo que, sob determinadas condições ambientais e quando utilizadas conforme preconizado, conservem a segurança, estabilidade e desempenho em serviço durante o período correspondente a sua vida útil. As exigências de proteção da armadura em função da classe de agressividade ambiental (CAA) e de durabilidade relacionadas à fissuração são apresentadas de forma resumida nas Tabelas 2.2 e 2.3 respectivamente, em conformidade com a ABNT NBR 6118:2014.

Agressividade ambiental		Nível mínimo de protensão		
Classe	Intensidade	Pré-tração	Pós-tração	
CAA I	Fraca	Protensão parcial	Protensão parcial	
CAA II	Moderada	Protensão limitada	Protensão parcial	
CAA III	Forte	Protensão completa	Protensão limitada	
CAA IV	Muito forte	Protensão completa	Protensão limitada	

Tabela 2.2: Nível mínimo de protensão em função da agressividade ambiental

Fonte: Adaptado de ABNT NBR 6118:2014

Tabela 2.3: Exigências relativas às fissuras em função do nível de protensão

Intensidade de protensão		Combinação de ações em serviço		
Nível	Тіро	ELS-D	ELS-F	ELS-W
1	Parcial	-	-	CF
2	Limitada	CQP	CF	-
3	Completa	CF	CR	-

Fonte: Adaptado de ABNT NBR 6118:2014

A partir da Tabela 2.2 nota-se que para a classe de agressividade CAA III, com uso do sistema com pré-tração, a intensidade mínima de protensão recomendada pela ABNT NBR 6118:2014 é a protensão completa, nível 3. Para a mesma CAA III, a intensidade mínima de protensão recomendada para o sistema com pós-tração aderente ou não aderente é a protensão limitada, nível 2.

O aço de protensão é mais suscetível à corrosão do que o aço comum, necessitando de maiores exigências de proteção contra a corrosão. Em geral, o sistema de pós-tração apresenta melhor proteção contra a corrosão do aço de protensão em comparação ao sistema de pré-tração. No sistema de pré-tração os fios e as cordoalhas, aço de protensão nú, são protegidos contra a corrosão pela camada externa de concreto, conforme as exigências de cobrimento da armadura em função da classe de agressividade ambiental (CAA). No sistema de pós-tração o aço de protensão é protegido contra a corrosão pela camada externa de concreto e por bainha metálica com injeção de nata de cimento ou por bainha plástica com graxa especial, sistema de pós-tração aderente e não aderente, deste modo é garantido dupla proteção. Os limites estabelecidos relativos à fissuração, apresentados na Tabela 2.3, são mais restritos para as situações com armadura ativa em comparação com a armadura passiva, devido a possibilidade de corrosão da armadura ativa sob tensão. Para protensão parcial, nível 1, é respeitado o Estado Limite de Abertura de Fissuras (ELS-W), estado em que as fissuras na superfície do concreto apresentam abertura característica w_k dentro de limites aceitáveis, no caso, w_k \leq 0,2 mm. Para a protensão limitada e completa, nível 2 e 3 respectivamente, são respeitados os seguintes Estados Limites simultaneamente: a) Estado Limite de Descompressão (ELS-D), estado em que não há tração na seção resistente; b) Estado Limite de Formação de Fissuras (ELS-F), estado em que se admite a formação da primeira fissura.

A verificação nos Estados Limites ELS-D e ELS-F pode ser realizada por meio da determinação da máxima tensão normal de tração no concreto σ_{ct} no Estádio Ia, situação na qual o concreto não está fissurado e admite-se que os materiais apresentam comportamento elástico linear. Pode ser observado a partir da Tabela 2.3 que para as situações com protensão limitada, as verificações devem ser realizadas simultaneamente no ELS-D para CQP (combinação quase permanente de ações) e no ELS-F para CF (combinação frequente de ações). Para as situações com protensão completa, as verificações devem ser realizadas simultaneamente no ELS-D para CF e no ELS-F para CR (combinação rara de serviço).

Em conformidade com a ABNT NBR 6118:2014 o ELS-F é atingido quando a tensão de tração na seção transversal for igual a resistência do concreto à tração na flexão f_{ct,f}, no caso α_F f_{ct,m}, onde f_{ct,m} é a resistência média do concreto à tração, obtida por 0,3 f_{ck}^{2/3} para f_{ck} ≤ 50 MPa, e α_F é o fator de forma da seção transversal que correlaciona aproximadamente a resistência à tração na flexão com a resistência à tração direta, com valores de α_F de 1,5 para seções retangulares, α_F de 1,3 para seções I ou T invertido com mesa tracionada e α_F de 1,2 para seções T ou π com mesa comprimida. A ABNT NBR 6118:2014 ainda esclarece que no ELS-F a resistência à tração do concreto deve ser considerada a partir de seu valor característico inferior, no caso 0,7 f_{ct,m}. Deste modo, é admitido no ELS-F para a resistência do concreto à tração o valor de 0,7 α_F f_{ct,m}.

Em relação às tensões normais à compressão no concreto, conforme a ABNT NBR 6118:2014 deve ser respeitado o Estado Limite de Compressão Excessiva (ELS-CE), estado em que as tensões de compressão no concreto σ_c atingem o limite convencional de resistência do concreto à compressão f_c. Para as combinações de ações em serviço, a ABNT NBR 6118:2014 não define o valor limite convencional da resistência do concreto à compressão. Entretanto, conforme Migliore Junior (2017) no ELS-CE é usual limitar a resistência do

concreto à compressão f_c em 0,7 f_{ck} , onde f_{ck} é a tensão de resistência característica do concreto à compressão aos 28 dias.

O estágio inicial da protensão é denominado de ato de protensão ou estado em vazio. Esse estágio inicial representa a fase crítica do sistema de protensão, pois o concreto é pouco resistente e o aço de protensão está sujeito à maior tensão em toda a sua vida útil. Nesta etapa os fios de aço podem se romper, o concreto da zona de ancoragem pode sofrer esmagamento e ancoragens provisórias podem escorregar. A operação com sistema de prétração é abrupta, pois os cabos de aço transferem a protensão, praticamente, no mesmo instante para o elemento de concreto. A operação com a pós-tração é gradual, pois os cabos de protensão são alongados individualmente. Neste estágio inicial não há carga externa além do peso próprio do elemento de concreto. Esse estágio pode ser considerado como teste do elemento protendido (MIGLIORE JUNIOR, 2017).

Para a situação do ato de protensão (estado em vazio), em acordo com a ABNT NBR 6118:2014 deve ser respeitado na idade j, o limite convencional da resistência do concreto à compressão f_{cj} estabelecido em 0,7 f_{ckj} (tensão de resistência característica à compressão aos j dias). No ato de protensão (ELU-ATO) deve ser considerada a atuação da força de protensão P ponderada pelo coeficiente de ações de protensão γ_p de 1,10 para o sistema com pós-tração e γ_p de 1,00 para o sistema com pré-tração.

Em conformidade com a ABNT NBR 6118:2014, para a situação do ato de protensão, a tensão máxima de tração no concreto σ_{ct} deve respeitar o limite estabelecido de 1,2 f_{ctj,m}, correspondente a idade j do concreto na aplicação da protensão. Caso ocorra tração na face oposta da peça, em qualquer caso, para garantir o ELU é necessário o uso de armadura passiva. Para efeitos de cálculo, a armadura passiva é determinada a partir da resultante de tensões de tração no concreto no Estádio I, com tensão no aço passivo não superior a 250 MPa para barras nervuradas.

A Tabela 2.4 apresenta o resumo de tensões limite no concreto à compressão σ_c e à tração σ_{ct} , para as situações com protensão completa e limitada, no estado em vazio e em serviço. As tensões em serviço devem ser verificadas para as combinações de ações em serviço CQP, CF e CR, em função do nível de protensão conforme apresentado na Tabela 2.3. Para o estado em vazio, as tensões limites no concreto à compressão σ_c e à tração σ_{ct} devem ser consideradas para o concreto com resistência prevista na idade j de aplicação da protensão. No ELS-D não deve haver tração na seção de concreto, deste modo o valor limite considerado da tensão normal de tração no concreto σ_{ct} é zero.

Estado	Idade do	Força de	Tensões limite no concreto		
	concreto	protensão	σc	σct	
Vazio	j dias	$\gamma_p \; P_0$	ELU-ATO: 0,7 f _{ckj}	ELU-ATO: 1,2 f _{ctj,m}	
Serviço	≥ 28 dias	P _{inf}	ELS-CE: 0,7 f_{ck} (*)	ELS-D: zero	
				ELS-F: 0,7 α _F f _{ct,m}	

Tabela 2.4: Resumo de tensões limites para protensão completa e limitada

(*) valor não definido na ABNT NBR 6118:2014

Fonte: Adaptado de ABNT NBR 6118:2014

No estado em vazio a força de protensão no tempo zero P₀ deve considerar as perdas imediatas da força de protensão. No estado em serviço a força de protensão no tempo infinito P_{inf} deve considerar as perdas imediatas e progressivas da força de protensão. Conforme a ABNT NBR 6118:2014, as perdas imediatas ou instantâneas são decorrentes de: a) deformação elástica imediata no concreto; b) atrito do cabo na bainha; c) acomodação do cone de ancoragem. As perdas lentas ou progressivas ou diferidas são decorrentes do efeito conjunto de: a) retração do concreto; b) fluência do concreto; c) relaxação do aço de protensão.

Conforme observado por Carvalho (2017), nos elementos de concreto armado, de maneira geral, é usual dimensionar a armadura de flexão no Estado Limite Último (ELU) para a combinação última normal (CN) de esgotamento da capacidade resistente da seção transversal, ELU-CN, e verificar as demais condições no ELS. Nos elementos de concreto protendido, além deste modo, é também usual realizar o inverso: dimensionar a armadura de protensão para as condições em serviço, ELS-F e ELS-D, e verificá-la no ELU-CN. A verificação da armadura de flexão no ELU-CN consiste em determinar uma posição de linha neutra que leve ao equilíbrio das resultantes de compressão no concreto com a resultante de tração na armadura ativa e passiva, se houver. Para esta posição é verificado se o momento fletor resistente de cálculo, M_{Rd}, é superior ao momento fletor solicitante de cálculo, M_{Sd}, ambos obtidos com valores ponderados para ações e resistências.

3 AÇOS DE PROTENSÃO

Os aços de protensão, similarmente aos aços de concreto armado, são designados pela sigla CP (concreto protendido), seguido do valor da resistência característica à ruptura em kgf/mm². Na identificação do produto é também adicionado as siglas RN ou RB, que identificam o aço de relaxação normal ou relaxação baixa. Os aços de protensão são classificados em fios, cordoalhas e barras.

Este capítulo apresenta o processo de produção de cordoalhas de 7 fios de aço de protensão CP-190 RB e CP-210 RB (recentemente disponibilizado no mercado nacional), bem como as principais características físicas e mecânicas e aplicações no âmbito nacional e internacional.

3.1 PROCESSO DE PRODUÇÃO

Conforme Dias (2015), o processo siderúrgico geral para obtenção do aço de protensão é similar para todos os aços, o qual decorre de uma série de operações de transformação metalúrgica e de conformação mecânica, podendo ser resumido o processo em cinco grandes etapas: a) preparo de matéria prima (coqueria e sinterização); b) produção de ferro-gusa (alto-forno de 1.500 °C); c) produção de aço (aciaria); d) refinamento e lingotamento e e) conformação mecânica (laminação e trefilação). As etapas básicas do processo de produção de fios de aço são ilustradas de na Figura 3.1.

De acordo com Santos (2016), o fio-máquina (aço longo de seção circular resultante da laminação) é a matéria prima para a fabricação do aço de protensão e pode ser classificado conforme sua composição química: a) fio-máquina de baixo carbono (0,02 a 0,2% de C); b) fio-máquina de médio carbono (0,3 a 0,5% de C) e c) fio-máquina de alto carbono (0,5 a 0,9% de C). Os aços de protensão são produzidos a partir do fio-máquina de alto carbono.

A primeira obra em concreto protendido no Brasil, a ponte do Galeão, construída no Rio de Janeiro em 1948, utilizou fios de aço de 5 mm importados da França. Poucos anos depois, em 1952 a Cia. Siderúrgica Belgo-Mineira, atualmente Belgo Bekaert Arames (*joint venture* entre ArcelorMittal e Bekaert), iniciou a produção brasileira de fios de 5 e 7 mm de diâmetro. Inicialmente eram produzidos no Brasil os aços com resistência à ruptura de 1.300
MPa. Atualmente os aços para protensão possuem características especiais e contam com composição química ausente de compostos fragilizadores (pureza), o que confere ao fio-máquina resistência à ruptura maior que 1.000 MPa. Essa pureza permite que o fio-máquina de aço-carbono seja trefilado (Figura 3.2), passando por diversas fieiras reduzindo em até 85% o diâmetro e elevando a tensão de ruptura para até a 2.100 MPa (CAUDURO; GARCIA, 2015). Portanto, a diferença básica entre o processo de fabricação de aços menos resistentes e o CP-210 consiste no número de passes na trefilação, possibilitada por sua pureza na composição química.

Figura 3.1: Síntese do processo de produção de fios de aço

Figura 3.2: Diferentes etapas do processo de trefilação

(a) fio-máquina antes do processo de trefilação

(b) equipamento industrial de trefilação

Fonte: Santos (2016)

A composição química média utilizada no fio máquina de aço-carbono para fabricação dos fios de protensão, conforme ABNT NBR 7482:1991 e ABNT NBR 7482:2008 é apresentada na Tabela 3.1. A partir de 2008 a ABNT NBR 7482 é mais rigorosa no limite de utilização dos elementos químicos enxofre e fósforo e não apresenta especificação para os outros elementos químicos que compõem o fio-máquina, permitindo a utilização de outras composições químicas desde que sejam garantidas as características mecânicas especificadas naquela mesma norma.

Elemento	ABNT NBR 7482:1991	ABNT NBR 7482:2008
Carbono (C)	0,60 a 0,90 %	-
Manganês (Mn)	0,50 a 0,90 %	-
Silício (Si)	0,10 a 0,35 %	-
Enxofre (S)	máximo 0,040 %	máximo 0,025 %
Fósforo (P)	máximo 0,040 %	máximo 0,020 %

Tabela 3.1: Composição química média do aço de protensão

Fonte: Adaptado de ABNT NBR 7482:1991,2008

Segundo Buchaim (2007), após o processo de trefilação são formadas as cordoalhas de aço de protensão compostas por 3 ou 7 fios (Figura 3.3). As cordoalhas de aço compostas por 7 fios, em geral, são mais comuns que as cordoalhas de aço compostas por 3 fios. As cordoalhas de 7 fios são formadas por 6 fios de aço de protensão com mesmo diâmetro nominal, encordoados juntos em forma helicoidal, em torno de um fio de aço central reto de diâmetro nominal 2% maior que os fios externos, conforme ilustrado pela Figura 3.4a. Após o processo de encordoamento, as cordoalhas são identificadas e acondicionadas em rolos de 3 tf, conforme ilustra a Figura 3.4b.

Figura 3.4: Diferentes etapas do processo de produção

(a) equipamento industrial de encordoamento

(b) cordoalha nua acondiciona em rolo de 3 tf após o processo de encordoamento

Fonte: Santos (2016)

Ainda segundo Buchaim (2007), o fio utilizado na fabricação da cordoalha inicialmente recebe aquecimento a cerca de 800 °C e é lentamente resfriado. Em seguida o fio é encruado a frio por trefilação. Posteriormente, para aumento de resistência, as cordoalhas são submetidas a tratamento térmico com aquecimento em torno de 300 °C seguido de resfriamento lento, usualmente por banho de chumbo líquido, o que resulta em alívio de tensões internas, deste modo são produzidas as cordoalhas de relaxação normal (RN). As cordoalhas de relaxação baixa (RB) são produzidas mediante tratamento termomecânico para estabilização, ou seja, durante o processo térmico ocorre simultaneamente estiramento da cordoalha. De acordo com Santos (2016), atualmente as cordoalhas de relaxação normal (RN) estão sendo produzidas no mercado nacional apenas sob encomenda.

3.2 PRINCIPAIS CARACTERÍSTICAS

A Tabela 3.2 apresenta as principais características das cordoalhas de 7 fios de aços de protensão CP-190 e CP-210 com relaxação baixa (RB), conforme ABNT NBR 7483:2008. Nota-se que as cordoalhas de aço de CP-190 RB e CP-210 RB apresentam mesma bitola ou diâmetro nominal. Ambos os aços de protensão devem apresentar módulo de elasticidade E_p de 200 GPa, alongamento mínimo na ruptura de 35‰ e relaxação máxima de 3,5% para atender às exigências da ABNT NBR 7483:2008. Pode se observar também que o aço de protensão CP-210 RB apresenta resistência à ruptura por tração 10% superior que o aço de protensão CP-190 RB. De acordo com Santos (2016), esta característica é obtida devido ao processo de metalurgia do aço, onde o aço CP-210 utiliza composição química de elementos mais nobres e de maior pureza quando comparado ao aço CP-190.

Categoria do aço de protensão	Resistência característica à ruptura (MPa)	Diâmetro nominal da cordoalha (mm)	Área nominal da seção de aço da cordoalha (cm²)	Massa nominal (kg/m)
	1 000	9,5	0,56	0,441
CF-190 RB	1.900	12,7	1,01	0,792
CP-210 RB	2.100	15,2	1,43	1,126

Tabela 3.2: Características das cordoalhas de 7 fios com relaxação baixa (RB)

Fonte: Adaptado de ABNT NBR 7483:2008

A força de protensão na cordoalha deve ser determinada de modo a atender as condições de segurança contra o escoamento da armadura ativa. Deste modo, a ABNT NBR 6118:2014 estabelece que durante as operações de protensão deve ser limitado o valor da tensão inicial da armadura ativa na saída do aparelho de tração (atuador hidráulico de protensão). Para o sistema de pré-tração, a tensão inicial $\sigma_{p,lim}$ da armadura ativa deve respeitar o valor limite de 0,77 f_{ptk} (tensão de resistência característica à ruptura por tração). Para o sistema de pós-tração, a tensão inicial $\sigma_{p,lim}$ da armadura ativa deve respeitar o valor limite de 0,74 f_{ptk} para armadura aderente e 0,80 f_{ptk} para armadura não aderente. Para o sistema de pós-tração com barras de aço CP-85/105, a tensão inicial $\sigma_{p,lim}$ da armadura ativa deve respeitar o valor limite de 0,72 f_{ptk}.

A tensão inicial $\sigma_{p,lim}$ da armadura ativa deve respeitar os valores limites supracitados em função de f_{ptk} e concomitante aos valores limites em função de f_{pyk} (tensão de escoamento convencional característica), conforme os valores apresentados na Tabela 3.3. Em conformidade com a ABNT NBR 7482:2008 e ABNT NBR 7483:2008, a relação mínima entre as tensões de escoamento e de ruptura para os aços de protensão RN é a relação f_{pyk} / f_{ptk} de 0,85 e para os aços de protensão RB relação f_{pyk} / f_{ptk} de 0,90. Para tirantes roscados, fornecidos em barras de aço CP-85/105, a relação f_{pyk} / f_{ptk} é de 0,82. Na prática, o valor da tensão inicial $\sigma_{p,lim}$ da armadura ativa pode ser determinado em função de f_{ptk} ou f_{pyk}, pois a diferença da $\sigma_{p,lim}$ entre ambos é de apenas 1%.

Conforme observado por Migliore Junior (2018), o limite da tensão inicial $\sigma_{p,lim}$ da armadura ativa considera coeficientes de ponderação de resistência γ_s diferentes para cada classe de relaxação do aço e conforme as dificuldades executivas do sistema de protensão utilizado para a montagem e o posicionamento de cabos ou barras. Deste modo, por ocasião da aplicação da força de protensão P_{ini}, a determinação da tensão inicial $\sigma_{p,lim}$ da armadura ativa na saída do aparelho de tração pode ser obtida, por simplificação, por uma única expressão [Equação (3.1)], que coincide aproximadamente com os valores estabelecidos na ABNT NBR 6118:2014. A força de protensão P_{ini}, na saída do equipamento de protensão, é

determinada pelo produto da tensão inicial $\sigma_{p,lim}$ e da área nominal da seção de aço do cabo de protensão A_p.

Sistema de	Tensão inicial $\sigma_{p,lim}$ do aço de protensão						
protensão	RN	RB	CP-85/105				
Pré-tração	$\leq \begin{cases} 0,77 f_{ptk} \\ 0,90 f_{pyk} \end{cases}$	$\leq \begin{cases} 0,77 f_{\text{ptk}} \\ 0,85 f_{\text{pyk}} \end{cases}$	-				
Pós-tração aderente	$\leq \begin{cases} 0,74 \ f_{ptk} \\ 0,87 \ f_{pyk} \end{cases}$	$\leq \begin{cases} 0,74 f_{ptk} \\ 0,82 f_{pyk} \end{cases}$	$\leq \begin{cases} 0,72 f_{ptk} \\ 0,88 f_{pyk} \end{cases}$				
Pós-tração não aderente	-	$\leq \begin{cases} 0,80 f_{ptk} \\ 0,88 f_{pyk} \end{cases}$	-				

Tabela 3.3: Tensão inicial da armadura ativa na saída do aparelho de tração

Fonte: Adaptado de ABNT NBR 6118:2014

$$\sigma_{p,lim} \le \frac{0.85}{\gamma_s} f_{ptk}$$
(3.1)

Onde:

 $\sigma_{p,lim}$ é a tensão limite no aço de protensão na saída do aparelho de tração;

f_{ptk} é a tensão de resistência característica do aço de protensão à ruptura por tração;

 γ_s é o coeficiente de ponderação de resistência e deve ser adotado conforme o sistema de protensão, sendo:

 $\gamma_s = 1,10$ para o sistema com armadura pré-tracionada;

 γ_s = 1,15 para o sistema com armadura pós-tracionada aderente;

 γ_s = 1,05 para o sistema com armadura pós-tracionada não aderente;

 γ_s = 1,18 para o sistema com barras de aço CP-85/105.

3.3 APLICAÇÃO NACIONAL

Conforme Cauduro e Garcia (2015), até meados da década de 60 eram aplicados por ano apenas 2.500 tf de aço para protensão no Brasil. Em 1973, com a execução da Ponte Rio-Niterói, no Rio de Janeiro, foi atingida a marca de 22.000 tf. Entre 1980 e 1995, o consumo médio brasileiro de aço para protensão era da ordem de 15.000 tf por ano. Em 1997 foi iniciada a produção nacional de cordoalhas engraxadas e plastificadas e, em 2002, ocorreu o início da produção de cordoalhas para estais, utilizadas na construção da Ponte do Rio Guamá, no Pará. Com o crescimento do uso da protensão no país, tanto nas indústrias de pré-fabricados quanto nas obras de infraestrutura, no ano de 2.000 o consumo foi superior a 55.000 tf, atingindo o seu maior consumo histórico em 2013 com 80.000 tf de aço de protensão, principalmente devido às obras destinadas aos eventos esportivos no país, Copa do Mundo 2014 e Olimpíadas 2016.

A Figura 3.5 apresenta o percentual de consumo de aço de protensão por região no país no ano de 2015. Pode se observar que a região com maior consumo de aço de protensão é a região Sudeste, representando 43% do consumo total nacional. Cabe destacar que a região Nordeste é a segunda maior consumidora de aço de protensão, com 30% de todo o consumo nacional.

Figura 3.5: Consumo de aço de protensão por região no Brasil

Fonte: Cauduro e Garcia (2015)

De acordo com Santos (2016), em meados de 2010, a Belgo Bekaert Arames iniciou a produção brasileira de aço CP-210 RB na unidade fabril de Juiz de Fora - MG, com início de vendas sob encomenda para o mercado nacional em 2013 e disponibilização do produto em estoque a partir de 2016.

3.4 APLICAÇÃO INTERNACIONAL

As cordoalhas de aço para concreto protendido são produzidas nos Estados Unidos em conformidade com a ASTM A416:2017, a qual apresenta as especificações para as cordoalhas nuas de 7 fios de aço *Grade 250* e *Grade 270*, com tensão de resistência à ruptura por tração de 250 ksi (1.725 MPa) e 270 ksi (1.860 MPa) respectivamente. A ASTM A416:2017 ainda não apresenta as especificações para as cordoalhas de aço *Grade 300* (2.070 MPa), deste modo foram realizados estudos recentes, principalmente no estado de Virginia, a fim de investigar o desempenho e as características mecânicas de cordoalhas de 7 fios de aço *Grade 300* (2.070 MPa).

Hill (2006) realizou ensaios com cordoalhas de diâmetro nominal de 12,7 mm de aço *Grade 270* e *Grade 300*, a fim de verificar e comparar as propriedades mecânicas dos materiais: tensão de resistência à ruptura; tensão de escoamento; módulo de elasticidade; alongamento último; e coeficiente de relaxação. Conforme Mann² (2006) *apud* Hill (2006), o ganho de resistência à tração das cordoalhas de aço *Grade 300* em relação às de aço *Grade 270*, consiste basicamente pelo uso de aditivos como o vanádio no fio-máquina, possibilitando o aumento de resistência à tração e capacidade de aumento do número de passes no processo de trefilação.

Outros estudos foram realizados no estado de Virginia, com intuito de investigar o desempenho de cordoalhas de aço *Grade 300* para aplicação em concreto protendido, tais como aqueles realizado por Hodges (2006), Loflin (2008) e Carroll, Cousins e Roberts-Wollmann (2017), que abordam o comprimento de transferência de força de protensão, a relaxação do aço de protensão e a qualidade da liga do aço *Grade 270* e *Grade 300*. Conforme o relatório FHWA/VTRC 10-CR2, fornecido pelo *Virginia Transportation Research Council* (2009), VTRC, o resultado destes estudos possibilitou a construção em 2008 de uma ponte, localizada na rodovia *U.S. Route* 58, no Condado de Scott, com superestrutura composta por vigas protendidas com uso de cordoalhas de aço *Grade 300*.

As cordoalhas de aço para concreto protendido são produzidas na Europa conforme as especificações da padronização européia prEN 10138-3:2011 e da padronização britânica BS 5896:2012. As cordoalhas de 7 fios de aço de protensão são classificadas em Y1770S7, Y1860S7 e Y2060S7, com tensão resistente de ruptura à tração do aço de 1.770 MPa, 1.860 MPa e 2.060 MPa respectivamente. Conforme prEN 10138-3:2011, a designação do produto consiste na seguinte identificação: a) a letra Y indica o aço de protensão; b) o primeiro número

² Mann, Ronald. E-mail correspondence reference Grade 270 versus Grade 300 strand. Strand-Tech Manufacturing. 2006

de quatro algarismos indica a tensão de ruptura à tração do aço em MPa; c) a letra S indica cordoalha (*strand*); d) indica o número de fios que constituem a cordoalha.

Atualmente as cordoalhas de 7 fios de aço de protensão conforme os padrões americano e europeu, *Grade* 270, *Grade* 300, Y1860 e Y2060, são produzidas principalmente pelos seguintes fabricantes: ArcelorMittal, Bridon, Insteel Industries, Maklada, Scaw Metals, Strand-Tech Manufacturing, SumidenWire, SunMing, TMG, VoestAlpine, Young Heung e Yuanxian Hi-teach Material. A Tabela 3.4 apresenta as categorias do aço de protensão produzidas pelos principais fornecedores conforme os padrões americano e europeu.

Fornecedor	Sede do segmento de fios	Categoria do aço de protensão produzido				
ArcelorMittal	Sainte-Colombe, França	Grade 270	Grade 300	Y1860	Y2060	
Bridon	Doncaster, Inglaterra	-	-	Y1860	-	
Insteel Industries	Mount Airy, Estados Unidos	Grade 270	-	-	-	
Maklada	Borj Cédria, Tunísia	Grade 270	Grade 300	Y1860	Y2060	
Scaw Metals	Germiston, África do Sul	-	-	Y1860	-	
Strand-Tech Manufacturing	Summerville, Estados Unidos	Grade 270	Grade 300	-	-	
Sumiden Wire	Stockton, Estados Unidos	Grade 270	-	-	-	
SunMing	Dezhou, China	Grade 270	Grade 300	Y1860	Y2060	
TMG	Hougang, Singapura	Grade 270	-	Y186	-	
VoestAlpine	Linz, Áustria	-	-	Y1860	-	
Young Heung	Seoul, Coréia do Sul	Grade 270	-	Y1860	-	
Yuanxian Hi-tech Material	Tianjin, China	Grade 270	-	Y1860	-	

Tabela 3.4: Principais fornecedores de cordoalhas de aço com padrão internacional

Fonte: Adaptado de ArcelorMittal (2010), Bridon (2010), Insteel Industries (2012), Maklada (2014), Scaw (2014), Strand-Tech Manufacturing (2017), Sumiden Wire (2015), SunMing (2015), TMG (2014), VoestAlpine (2016), Young Heung (2012) e Yuanxian Hi-tech Material (2016) Recentemente foram desenvolvidas cordoalhas de 7 fios de aço de protensão com resistência à ruptura por tração de 2.400 MPa, entretanto ainda não existe regulamentação para este tipo de aço de protensão. Experimentos recentes realizados, principalmente na Coréia do Sul, investigam o desempenho e as características mecânicas destas cordoalhas de aço para aplicação em elementos de concreto protendido.

A partir de análise numérica inicial e posterior experimental, Kim *et al.* (2013) avaliaram o comportamento do sistema de mono-ancoragem para cordoalhas de 15,2 mm de aço de protensão de 2.400 MPa. Os resultados do trabalho indicam que os sistemas de mono-ancoragem avaliados, usuais em cordoalhas de aço de protensão de 1.860 MPa, apresentam comportamento mecânico satisfatório para o uso em elementos de concreto protendido com cordoalhas de 7 fios de aço de protensão de 2.400 MPa.

Kim, Yang e Ying (2016) realizaram ensaios em laboratório com vigas protendidas com cordoalhas de 15,2 mm de aço de protensão de 1.860 MPa e de 2.400 MPa, com intuito de avaliar o comprimento de transferência da força de protensão da armadura pré-tracionada. Os resultados dos ensaios das 28 vigas mostram que o comprimento de transferência da armadura pré-tracionada com o uso do aço de protensão de 2.400 MPa foi 10% superior ao com uso de aço de protensão de 1.860 MPa, sendo esse valor inferior ao ganho de 30% da resistência do aço de protensão.

4 METODOLOGIA

Neste capítulo, primeiramente, são apresentados os critérios de projeto dos exemplos desenvolvidos de tabuleiro de ponte rodoviária, para longarina armada com uso de aço comum CA-50 e protendida com uso de aço CP-190 RB e CP-210 RB. Em seguida, são apresentados os critérios de análise e dimensionamento estrutural, bem como os critérios de comparação de consumos e custos de produção de longarina de ponte rodoviária.

4.1 EXEMPLOS DESENVOLVIDOS

Para análise da longarina isostática foi proposto o desenvolvimento de exemplos numéricos de tabuleiro de ponte rodoviária baseados no projeto padrão PP-DE-C01/294 do DER-SP (2006), o qual foi adaptado para este trabalho. Foram idealizados quatro tabuleiros com comprimento nominal variável em função do centro da junta estrutural, sendo estes: 20, 25, 30 e 35 m. A Figura 4.1 ilustra a planta da superestrutura do exemplo do tabuleiro de 14,10x25,00 m². Para cada tabuleiro de ponte rodoviária em estudo são apresentados os resultados de dimensionamento da viga principal para três sistemas construtivos: longarina armada com CA-50, protendida com utilização da cordoalha usual de aço CP-190 RB e protendida com uso da cordoalha de aço CP-210 RB recém introduzida no mercado brasileiro. As opções em concreto protendido foram consideradas com protensão limitada e completa.

A quantidade de longarinas isostáticas foi mantida igual para cada exemplo em estudo, variando apenas a altura da seção transversal em função do comprimento do tabuleiro, de modo a atender as condições de projeto no ELS (Estado Limite de Serviço) e no ELU (Estado Limite Último). Foi fixado o carregamento de ponte classe 450, a largura do tabuleiro em 14,10 m e a espessura da laje moldada no local em 20 cm. Foi adotado concreto de classe de resistência C45 para vigas pré-moldadas e concreto de classe de resistência C35 para laje de tabuleiro moldada no local. Foi considerada classe de agressividade ambiental CAA II, cobrimento de armadura passiva de 3 cm e pavimento asfáltico de CBUQ (concreto betuminoso usinado a quente) com espessura média de 10 cm.

Figura 4.1: Planta da superestrutura do tabuleiro 14,10x25,00 m²

Fonte: Adaptado de PP-DE-C01/294 DER-SP (2006)

O tabuleiro em estudo de largura total de 14,10 m é composto por cinco longarinas pré-moldadas, espaçadas de 3,24 m entre si, conforme corte transversal da superestrutura apresentado na Figura 4.2. O corte longitudinal da superestrutura é apresentado na Figura 4.3. As longarinas isostáticas (VP) são apoiadas sobre as vigas de apoio VA (travessa de pórtico) por meio de aparelho de apoio fretado e possuem travamento de extremidade por intermédio das transversinas de extremidade (VT), moldadas no local. A laje do tabuleiro é constituída por pré-lajes de 8 cm de espessura, posteriormente solidarizadas por concretagem no local. Os aparelhos de apoio poderão ser substituídos pelo levantamento do tabuleiro através de macaqueamento das longarinas por meio das transversinas de extremidade.

Figura 4.2: Corte da superestrutura do tabuleiro 14,10x25,00 m²

Fonte: Adaptado de PP-DE-C01/294 DER-SP (2006)

Figura 4.3: Corte longitudinal da superestrutura com detalhe da região de apoio

Fonte: Adaptado de PP-DE-C01/294 DER-SP (2006)

Como diretrizes para os exemplos numéricos deste trabalho foram consideradas as relações entre altura e vão das longarinas isostáticas a relação média de 1:15 para as vigas em concreto armado e em concreto protendido. Conforme a instrução de projeto IP-DE-C00-001_A do Departamento de Estradas de Rodagem do Estado de São Paulo, DER-SP (2005), é recomendado na etapa de pré-dimensionamento utilizar a relação de 1:16 para longarinas isostáticas protendidas, espaçadas na ordem de 3,30 m entre si. Para longarinas com estrutura isostática em concreto armado, espaçadas na ordem de 3,00 m entre si, é recomendado utilizar a relação de 1:14.

De acordo com Thomaz (2005), a altura da seção transversal de vigas protendidas pré-moldadas, com vinculação isostática, pode ser estimada a partir da curva de correlações apresentada na Figura 4.4. A curva de correlações foi determinada a partir de dados de pontes e viadutos rodoviários reais. A análise da Figura 4.4 indica que na etapa de prédimensionamento é recomendado utilizar a relação entre altura e vão de longarinas isostáticas protendidas a relação média de 1:20.

Figura 4.4: Correlação entre altura e vão de longarina pré-moldada protendida

Fonte: Adaptado de Thomaz (2005)

Para a espessura da laje central sobre as longarinas, Thomaz (2005) recomenda que a espessura total deve ser de aproximadamente 6% da distância entre eixos de longarinas e de altura não inferior a 17 cm. A distância entre eixos de vigas pré-moldadas protendidas, com vinculação isostática, de obras de pontes ou viadutos rodoviários pode ser determinada pela Equação (4.1) proposta por Thomaz (2005), para etapa de pré-dimensionamento. Conforme já exposto, este trabalho considera as premissas do projeto padrão PP-DE-C01/294 do DER-SP (2006) e neste as longarinas são espaçadas entre si de 3,24 m.

$$a \cong 2,8\% \ \ell + 2 \ m$$
 (4.1)

Onde:

a é a distância entre eixos de longarinas protendidas, em metros;

l é o comprimento do vão teórico de longarina pré-moldada, em metros.

A Tabela 4.1 apresenta o resumo de dimensões consideradas para o desenvolvimento dos exemplos numéricos, de tabuleiro de pontes rodoviárias classe 450, apresentados neste trabalho. A altura da seção transversal da longarina isostática foi fixada em função do comprimento do vão teórico do elemento estrutural e foi considerada a mesma altura da seção transversal para a viga armada e para a viga protendida. A altura da seção transversal da viga pré-moldada variou entre 120 a 200 cm. A altura total da seção transversal da longarina pré-moldada solidarizada com a laje do tabuleiro moldado no local foi fixada entre 140 a 220 cm.

Dimensões do	Longarina isostática armada / protendida					
tabuleiro (m²)	Comprimento do vão teórico (m)	Altura seção simples (cm)	Altura seção composta (cm)			
14,10x20,00	18,00	120	140			
14,10x25,00	23,00	140	160			
14,10x30,00	28,00	180	200			
14,10x35,00	33,00	200	220			

Tabela 4.1: Resumo de dimensões consideradas para os exemplos numéricos

Fonte: Autor

4.2 ANÁLISE E DIMENSIONAMENTO ESTRUTURAL

Para o desenvolvimento deste trabalho foram consideradas as seguintes ações permanentes sobre a superestrutura: peso próprio de elementos estruturais e não estruturais de concreto, pavimentação e recapeamento. As ações variáveis gravitacionais atuantes sobre a superestrutura foram consideradas de acordo com a ABNT NBR 7188:2013, para valores de carga móvel rodoviária padrão, ponte de classe 450. A Tabela 4.2 apresenta o resumo de ações permanentes e variáveis consideradas neste trabalho, onde A_c é a área da seção transversal bruta da viga de concreto e φ é coeficiente de impacto.

Ação	Intens	sidade	Descrição
go	25,0 A _c	kN/m	Peso próprio da longarina pré-moldada
g1	5,0	kN/m²	Peso próprio da laje de tabuleiro com espessura de 20 cm
g 2	8,0	kN/m	Peso próprio de barreira e placa de fechamento
g ₃	2,4	kN/m²	Pavimento com espessura de 10 cm
g 4	2,0	kN/m²	Possível recapeamento
Q	75,0 φ	kN/roda	Veículo classe 450
q	5,0 φ	kN/m²	Multidão na pista de rolamento

Tabela 4.2: Ações permanentes e variáveis consideradas em valores característicos

Fonte: Autor

Neste trabalho de pontes com tabuleiro reto ortogonal descontínuo, composto por tramos de vigas pré-moldadas simplesmente apoiadas sobre pilares, em articulações do tipo elástico (aparelhos de apoio), por simplificação, não foram consideradas ações horizontais na superestrutura devido aos efeitos de frenagem e aceleração, variação de temperatura e vento. Como as longarinas isostáticas estão apoiadas em aparelhos de apoio, as ações horizontais longitudinais acrescem pouca força normal às longarinas. Neste estudo, também por simplificação, não foram considerados os elementos estruturais da mesoestrutura e infraestrutura.

Determinadas as ações atuantes na superestrutura, os esforços nos elementos estruturais foram obtidos neste trabalho com auxílio de programa comercial de análise estrutural STRAP (*Structural Analysis Programs*) versão 2017, desenvolvido pela ATIR *Engineering Software Development*. Conforme ATIR (2017), o programa STRAP é um conjunto de módulos de análise estática e dinâmica de elementos de barras e de elementos finitos (planos quadriláteros ou triangulares, sólidos e paredes) para estruturas de edifícios, torres, cascas, pontes, barragens e outras estruturas em concreto armado/protendido ou estrutura metálica. Atualmente o programa é utilizado em mais de 50 países ao redor do mundo, em seis idiomas diferentes e compatível com diversos códigos normativos de construção internacionais.

O modelo estrutural do tabuleiro aqui considerado, é formado por elementos finitos planos, que representam as lajes do tabuleiro, e por elementos de barra, que representam as

longarinas e transversinas de apoio, conforme ilustrado na Figura 4.5. Os elementos finitos de placa, planos e quadriláteros foram definidos com dimensões não superiores a 50 cm e com relação entre os lados não maior que a proporção 1:1,5. O modelo estrutural do tabuleiro com dimensões nominais de 14x25m², ilustrado na Figura 4.5, é composto por 1.377 nós, 288 elementos de barras, 1.300 elementos planos quadriláteros e 10 apoios fixos. Como pode ser observado na Figura 4.5, o modelo de laje do tabuleiro apresenta largura total de 13,96 m, e deste modo, não são consideradas as placas de fechamento pré-moldadas de espessura de 7 cm, as quais não apresentam função estrutural, tal como ilustrado na Figura 4.2.

O processamento do modelo contempla dois estágios, os quais são baseados em etapas construtivas. O primeiro estágio corresponde à situação de montagem das vigas prémoldadas com seção simples e sem a incorporação da laje do tabuleiro, no qual são aplicadas as ações permanentes do tabuleiro (peso próprio das vigas pré-moldadas e da laje do tabuleiro). O estágio final corresponde ao modelo completo considerando a solidarização da laje do tabuleiro formando a seção composta final das longarinas. Neste estágio são aplicadas todas as ações verticais permanentes restantes (pavimentação, barreiras e placas de fechamento) e as ações móveis do veículo considerado (classe 450). Para simular o efeito da ausência de rigidez à torção de elementos de concreto devido à fissuração, por simplificação,

Fonte: Autor

as inércias à torção foram reduzidas a 10% da inércia da seção bruta de concreto para as barras correspondentes as longarinas e transversinas de apoio.

O cálculo estático do modelo estrutural e a distribuição transversal de cargas na ponte de vigas múltiplas, após a solidarização das lajes com as vigas, foram realizados automaticamente pelo programa considerando a rigidez dos elementos estruturais. A partir da determinação de faixas para aplicação de carga móvel, o programa aplica em cada divisão de faixa uma carga por área uniforme unitária e em seguida determina as linhas de influência e a envoltória de esforços máximos e mínimos de carga móvel. Conforme ilustrado na Figura 4.6, neste trabalho foram definidas seis faixas com largura de 2,16 m para a aplicação das cargas móveis. A carga de multidão é aplicada em todas as seis faixas e a carga de veículo é aplicada ao longo de uma faixa, permutando entre as seis faixas definidas. Neste trabalho, as cargas móveis não foram aplicadas nas extremidades transversais do tabuleiro, devido nesta região a presença de barreiras de concreto.

Figura 4.6: Faixas de aplicação de carga móvel no modelo estrutural

Fonte: Autor

A segurança e o desempenho dos elementos estruturais lineares é verificada conforme os critérios propostos (dimensionamento, verificação e detalhamento) na ABNT NBR 6118:2014 com relação aos estados limites últimos (ELU) e de serviço (ELS). O fluxograma ilustrado na Figura 4.7 apresenta de forma resumida os procedimentos considerados neste trabalho para dimensionamento e verificação de elementos estruturais lineares em concreto armado solicitados por ação de momento fletor. A Figura 4.8 apresenta o fluxograma de processos considerados para dimensionamento e verificação de elementos estruturais lineares em concreto protendido solicitados por ação de momento fletor. O fluxograma considerado para dimensionamento de elementos estruturais lineares solicitados por força cortante e momento torçor é apresentado na Figura 4.9.

Figura 4.7: Fluxograma para dimensionar e verificar armadura de flexão em CA

Fonte: Autor

Figura 4.8: Fluxograma para dimensionar e verificar armadura de flexão em CP

Fonte: Autor

Figura 4.9: Fluxograma para dimensionar armadura de cisalhamento e de torção

Fonte: Autor

Os fluxogramas apresentados nas Figuras 4.7 a 4.9 contemplam o dimensionamento e a verificação de seções críticas em concreto armado e protendido. Entretanto, para o detalhamento completo do elemento estrutural, é necessário considerar outros fatores, tais como: a) diâmetro de armadura; b) espaçamento de armadura; c) ancoragem de armadura; d) emendas de armadura; e) armadura nos apoios; f) armadura de pele; g) armadura de fretagem; h) armadura de reforço de furo de içamento; i) situações transitórias de transporte e de montagem; j) etapas construtivas e de protensão; k) avaliação de flechas.

Neste trabalho a avaliação dos deslocamentos verticais estimados (flechas) nas longarinas foram obtidos por meio do modelo estrutural do tabuleiro, no qual considera em cada trecho de barra da longarina a rigidez em função da fissuração da seção de concreto. Para os trechos com seção fissurada é considerado no modelo estrutural a inércia no Estádio II e para os trechos com seção não fissurada a inércia no Estádio I, conforme exemplificado na Figura 4.10, onde M_r é o momento de fissuração do elemento estrutural. Para as regiões de seção fissurada é adotado o valor do módulo de deformação secante do concreto E_{cs} de

34 GPa e para as regiões de seção não fissurada o valor do módulo de deformação tangente do concreto E_{ci} de 38 GPa.

Figura 4.10: Comportamento de viga isostática em serviço

(a) diagrama de momento fletor

fissurada

fissurada

fissurada

O acréscimo de deslocamento na longarina devido ao efeito da fluência do concreto foi avaliado de maneira aproximada, conforme indicado na ABNT NBR 6118:2014, pela multiplicação do valor da flecha imediata devido às cargas permanentes pelo coeficiente de fluência φ , com valor de φ de 2,55 para os elementos em concreto protendido e de φ de 1,32 para os elementos em concreto armado. A flecha total é obtida pela somatória da flecha imediata e da flecha diferida ao longo do tempo. Para as longarinas em concreto protendido, o deslocamento estimado devido ao efeito da protensão foi avaliado na etapa inicial de ato de protensão e na etapa final após as perdas de protensão.

Conforme Fusco (2013), de modo geral, as exigências referentes às verificações e disposições construtivas de armadura em elementos de concreto protendido são mais rigorosas que aquelas relativas a elementos em concreto armado. Nas regiões próximas à ancoragem de armadura ativa, determinadas de zona de perturbação ou de regularização, a distribuição de tensões não é uniforme e apresenta comportamento semelhante à de um bloco parcialmente carregado. Deste modo, é necessária a presença de armadura transversal, convenientemente disposta, para resistir as tensões de tração provocadas pela introdução de protensão e respectivo espraiamento de tensões localizadas, impedindo fendilhamento e fissuração superficial.

Fonte: Autor

Para este trabalho e conforme proposto por Fusco (2013), para o caso de vigas protendidas com ancoragens múltiplas, foi considerado que a armadura de fretagem acoplada aos dispositivos de ancoragem, recomendada pelos fornecedores de dispositivos de protensão, a qual contribui para a constituição de parte da armadura transversal necessária para resistir as tensões de tração na zona de regularização. No Brasil os principais fornecedores de dispositivos de ancoragem de protensão são: Dywidag-Prepron, Freyssinet, MAC Protensão, Protende e Rudloff. Para os exemplos numéricos abordados neste trabalho, de pós-tração aderente com ancoragem ativa, foi considerada a armadura de fretagem de CA-50 em forma helicoidal, conforme apresentado na Figura 4.11.

Fonte: Adaptado de Freyssinet (2012)

4.3 COMPARATIVOS DE CUSTOS DE PRODUÇÃO

Para comparação de consumos de produção de viga pré-moldada foi considerada como variável os sistemas construtivos: concreto armado, concreto protendido com uso de aço CP-190 RB e concreto protendido com uso de aço CP-210 RB. Para cada sistema construtivo adotado é apresentado o consumo dos seguintes materiais e serviços: concreto, forma, aço CA-50, aço CP-190 RB, aço CP-210 RB e acessórios de protensão.

A comparação de custos para produção de viga armada isostática de ponte rodoviária com uso de CA-50 e protendida com aço CP-190 RB e CP-210 RB foi realizada com uso da Tabela de Preços Unitários (TPU) conforme Departamento de Estradas de Rodagem do Estado de São Paulo, DER-SP (2018), relativa ao mês de março de 2018 com valores não desonerados para Obras de Arte Especiais (OAE). Os preços unitários contemplam os valores relativos a mão de obra, encargos sociais (129,28% para horista e 78,30% para mensalista), BDI (35%) e todos os equipamentos necessários à perfeita execução dos serviços.

Conforme especificação técnica ET-DE-C00/001 do DER-SP (2006), para o preço unitário de concreto classe C45 estão inclusos: fornecimento, lançamento, adensamento, acabamento, perdas e cura do concreto. De acordo com ET-DE-C00/002 do DER-SP (2006), para o preço unitário de forma metálica especial para vigas estão inclusos: fornecimento, montagem, escoramento lateral, travamentos, desmontagem, perdas e reaproveitamento. Segundo ET-DE-C00/004 do DER-SP (2006), para o preço unitário de armadura passiva de aço CA-50 estão inclusos: fornecimento, corte, dobra, perdas, arame recozido e montagem. Ainda de acordo com a mesma especificação técnica, para o preço unitário de armadura ativa estão inclusos: fornecimento, preparação de cabos, bainha metálica, enfiação, purgadores, montagem, fixação, protensão, injeção com calda de cimento, corte, perdas e acabamento. O preço de ancoragem ativa inclui: fornecimento, montagem, bloco, placa, funil e cunhas.

A Tabela 4.3 apresenta os preços unitários de cada item para a execução de vigas pré-moldadas de obras de ponte rodoviária. A partir de consulta a fornecedores de cordoalhas de aço foi possível identificar o preço do material, sendo 5,68 R\$/kg para cordoalhas CP-190 RB e 5,95 R\$/kg para cordoalhas CP-210 RB, a diferença de preço é de 0,27 R\$/kg, menor que 5%. A TPU do DER-SP (2018) aparentemente não distingue o preço de armadura ativa, em virtude de o preço unitário já contemplar outros serviços além da própria cordoalha de aço. Neste trabalho o preço unitário considerado para o item aço CP-210 foi obtido pela diferença de preço das cordoalhas, CP-190 RB e CP-210 RB, com acréscimo no preço unitário para item CP-210 a partir do item CP-190 da TPU do DER-SP (2018), resultando em valor de 25,35 R\$/kg para CP-210, contra 25,08 R\$/kg do CP-190. A diferença de preço unitário de material é, portanto, cerca de 1%. Também pode ser notado que esta diferença é menor do que o acréscimo de resistência do aço de protensão.

Os preços de ancoragem ativa apresentados na Tabela 4.3 são referentes a cabos de aço de CP-190 RB. Neste trabalho de viga protendida com uso de cordoalhas de aço CP-210 RB foi considerado o preço de ancoragem ativa de CP-190 RB com força de protensão inicial equivalente ao CP-210 RB. Foi realizada interpolação linear dos valores de preço unitário apresentados na Tabela 4.3 para os casos de ancoragem ativa ausentes na TPU do DER-SP (2018): ancoragem ativa 9 ϕ 12,7 mm e 15 ϕ 12,7 mm.

A partir dos quantitativos de materiais e custos de execução de viga armada e viga protendida com aço CP-190 e CP-210, são obtidos índices por área de tabuleiro e por volume de concreto visando obter indicativos de qual é o sistema construtivo mais eficiente economicamente para cada caso de tabuleiro rodoviário em estudo.

Descrição do item	Unid.	Preço unit. (R\$/unid.)
Concreto C45	m³	620,35
Forma metálica	m²	82,66
Aço CA-50	kg	10,42
Aço CP-190 RB	kg	25,08
Aço CP-210 RB	kg	25,35
Ancoragem ativa 6 \phi12,7	unid.	814,45
Ancoragem ativa 9 \phi12,7	unid.	1.173,23
Ancoragem ativa 12 q12,7	unid.	1.532,00
Ancoragem ativa 15 q12,7	unid.	2.018,51
Ancoragem ativa 19 \phi2,7	unid.	2.667,19

Tabela 4.3: Preço unitário de itens para produção de longarinas

Fonte: Adaptado de TPU DER-SP (2018)

5 DESENVOLVIMENTO DOS CASOS EM ESTUDO

Esse capítulo apresenta os resultados de análise e dimensionamento estrutural dos exemplos numéricos de longarinas em concreto armado com uso de aço comum CA-50 e em concreto protendido com uso de aço CP-190 RB e CP-210 RB. São apresentados os resultados da viga principal armada e protendida para cada tabuleiro de ponte rodoviária em estudo, com dimensões em planta de: 14,10x20,00 m², 14,10x25,00 m², 14,10x30,00 m² e 14,10x35,00 m². Os exemplos numéricos foram desenvolvidos conforme os critérios apresentados no capítulo 4.

5.1 TABULEIRO 14,10x20,00 m²

5.1.1 Características geométricas e esforços solicitantes

Para este exemplo numérico a longarina isostática possui comprimento de vão teórico *l* de 18 m e comprimento total de 19 m. A viga principal em estudo apresenta seção composta por pré-viga de altura parcial de 120 cm e mesa colaborante moldada no local com espessura média de 20 cm, para a solução em concreto armado e em concreto protendido. Adotado concreto de classe de resistência C45 para vigas pré-moldadas e concreto de classe de resistência C35 para mesa colaborante moldada no local. A geometria das seções transversais 0 (seção do apoio) e 5 (seção meio do vão) da viga pré-moldada em estudo, as quais são adaptadas da recomendação do projeto padrão PP-MC-C01/029 do DER-SP (2005), são ilustradas na Figura 5.1a e Figura 5.1b, respectivamente.

As principais características geométricas da longarina na seção transversal 5 são apresentadas na Tabela 5.1, para a seção simples inicial e seção composta final da viga principal VP2, onde h é a altura total da viga, y_1 é a distância da fibra inferior em relação ao centro geométrico, A_c é a área da seção transversal bruta de concreto, I_c é o momento de inércia da seção bruta de concreto e r é o coeficiente de rendimento mecânico da seção transversal.

Figura 5.1: Seções transversais da viga pré-moldada

Fonte: Adaptado de PP-MC-C01/029 DER-SP (2005)

Seção	Inicial	Final
h (cm)	120,0	140,0
y1 (cm)	61,5	97,8
A _c (cm ²)	5.080	11.560
Ic (cm ⁴)	8.976.874	21.794.314
r	0,49	0,49

Tabela 5.1: Características geométricas da seção transversal 5

Fonte: Autor

A Tabela 5.2 apresenta o resumo de esforços solicitantes característicos de flexão, de cisalhamento e de torção para a longarina VP2, de maior solicitação no tabuleiro em estudo, onde M_{gk} e M_{qk} são os esforços de flexão característicos devido às ações permanentes e às ações variáveis respectivamente, V_{gk} e V_{qk} são os esforços de cisalhamento característicos devido às ações permanentes e às ações variáveis respectivamente, T_{gk} e T_{qk} são os esforços de torção característicos devido às ações permanentes e às ações variáveis respectivamente, T_{gk} e T_{qk} são os esforços de torção característicos devido às ações permanentes e às ações variáveis respectivamente. Os esforços solicitantes máximos e mínimos devido às ações variáveis verticais apresentados na Tabela 5.2 foram amplificados pelo coeficiente de impacto φ de 1,31. Para avaliar as solicitações na longarina, as seções de cálculo foram fixadas em décimos de vão, onde a Seção 0 e 10 representam as seções do apoio e a seção 5 representa a seção do meio de vão. A partir da análise da Tabela 5.2 nota-se que M_{gk} representa cerca de 46% do esforço total de flexão característico e, consequentemente, M_{qk+} representa cerca de 54% do total.

Seção	M _{gk} (kN.m)	M _{qk+} (kN.m)	M _{qk-} (kN.m)	V _{gk} (kN)	V _{qk+} (kN)	V _{qk} . (kN)	T _{gk} (kN.m)	T _{qk+} (kN.m)	T _{qk-} (kN.m)
0	0	12	-58	377	475	-76	0,4	13,0	-13,1
1	628	815	-100	313	415	-10	0,4	11,7	-11,9
2	1.126	1.383	-88	232	331	-63	0,3	10,2	-10,7
3	1.480	1.753	-76	158	284	-112	0,2	9,4	-9,8
4	1.693	1.967	-65	77	235	-162	0,1	8,3	-8,4
5	1.765	2.035	-55	0	204	-193	0,0	7,9	-7,7

Tabela 5.2: Resumo de esforços solicitantes característicos

Fonte: Autor

5.1.2 Dimensionamento de longarina armada

O dimensionamento da longarina VP2 em concreto armado em estudo foi realizado a partir dos esforços solicitantes apresentados no capítulo anterior. A Tabela 5.3 apresenta o resumo de dimensionamento de armadura passiva de flexão no ELU, onde M_{Sd} é o momento fletor solicitante de cálculo devido à combinação última normal, M_{Rd} é o momento fletor resistente de cálculo, d é a altura útil, x é a profundidade da linha neutra, A_s é a área da seção transversal da armadura longitudinal passiva de tração sem considerar os efeitos de fadiga da armadura e ρ_s é a taxa geométrica de armadura longitudinal passiva de tração. Para o dimensionamento da longarina VP2 foi considerado a mesa colaborante moldada no local com largura b_f de 324 cm.

Seção	M _{sd} (kN.m)	d (cm)	x/d	A _s (cm²)	Arranjo	ρs	M _{Rd} (kN.m)
0	18	134	0,02	32,83	8 φ25	0,34%	2.268
1	2.071	134	0,02	35,84	8 φ25	0,34%	2.268
2	3.595	132	0,04	63,60	14 φ25	0,59%	3.881
3	4.627	130	0,05	83,56	18 φ25	0,76%	4.890
4	5.235	130	0,06	94,81	20 ф25	0,85%	5.420
5	5.434	130	0,06	98,50	21 φ25	0,89%	5.684

Tabela 5.3: Resumo de dimensionamento de armadura passiva de flexão

Fonte: Autor

A Tabela 5.4 apresenta o resumo de verificação de fadiga da armadura passiva de flexão no ELS, onde $M_{fad,máx}$ e $M_{fad,mín}$ são os momentos fletores máximos e mínimos

respectivamente devido à combinação frequente de fadiga, I_{II} é o momento de inércia da seção fissurada do concreto no Estádio II e $\Delta \sigma_s$ é a variação de tensão normal no aço de armadura longitudinal.

Seção	M _{fad,máx} (kN.m)	M _{fad,mín} (kN.m)	I _Ⅲ (cm⁴)	∆σ _s (MPa)	A _s (cm²)	Arranjo
0	6	-29	4.002.162	6,4	32,83	8 φ25
1	1.036	578	4.002.162	83,6	35,84	8 φ25
2	1.818	1.082	6.478.427	78,6	63,60	14 φ25
3	2.356	1.442	7.900.346	77,2	83,56	18 φ25
4	2.676	1.660	8.929.579	74,8	94,81	20 0 25
5	2.782	1.737	8.929.579	76,9	98,50	21 φ25

Tabela 5.4: Resumo de verificação de fadiga da armadura passiva de flexão

Fonte: Autor

Como pode ser observado na Tabela 5.3, o esforço máximo de flexão ocorre na seção de cálculo 5 (seção meio do vão). Para a viga em estudo é adotado o arranjo de armadura composto por 21 barras de aço de CA-50 com diâmetro de 25 mm, formado por 7 barras de aço CA-50 por camada, conforme ilustrado na Figura 5.2. Pode ser observado na Tabela 5.4 que para os arranjos de armadura adotados na Tabela 5.3 não haverá ruptura por fadiga da armadura longitudinal para a combinação frequente de fadiga, pois as variações de tensões no aço em serviço não atingiram o valor da tensão máxima $\Delta f_{sd,fad}$ permitida pela ABNT NBR 6118:2014, $\Delta f_{sd,fad}$ de 175 MPa para barras retas com diâmetro de 25 mm.

Figura 5.2: Arranjo de armadura passiva na seção do meio do vão

Fonte: Autor

O resumo de dimensionamento de armadura de cisalhamento combinada com torção no ELU é apresentado na Tabela 5.5, onde V_{Sd} é a força cortante solicitante de cálculo devido à combinação última normal, T_{Sd} é o momento torçor solicitante de cálculo devido à combinação última normal, V_{Rd2} é a força cortante resistente de cálculo relativa às diagonais comprimidas de concreto, T_{Rd2} é o momento torçor resistente de cálculo relativo às diagonais comprimidas de concreto, b_w é a largura da alma da viga, A_{sw} e A₉₀ são as áreas da seção transversal da armadura transversal de força cortante e de torção respectivamente sem considerar os efeitos de fadiga da armadura.

O dimensionamento da armadura de cisalhamento foi realizado conforme o modelo de cálculo I prescrito na ABNT NBR 6118:2014. A largura b_w da alma da viga é variável entre as seções de cálculo 0 a 2, sendo b_w de 60 cm na seção transversal 0 (seção do apoio) e b_w de 20 cm na seção transversal 2. Entre as seções de cálculo 2 a 5 (seção meio do vão), b_w é constante, no caso 20 cm. O detalhamento típico da variação de largura da alma de longarina pré-moldada é apresentado no apêndice deste trabalho.

Seção	V _{Sd} (kN)	T _{Sd} (kN.m)	$\frac{V_{Sd}}{V_{Rd2}} + \frac{T_{Sd}}{T_{Rd2}}$	b _w (cm)	A _{sw} (cm²/m)	A ₉₀ (cm²/m)	Arranjo
0	1.221	20	0,23	60	9,11	0,49	φ10 c/20 (4R)
1	1.044	18	0,30	40	8,27	0,69	φ10 c/12 (2R)
2	809	16	0,52	20	9,84	1,31	φ10 c/12 (2R)
3	640	14	0,43	20	6,75	1,27	φ10 c/15 (2R)
4	457	13	0,32	20	3,17	1,12	φ10 c/25 (2R)
5	310	12	0,24	20	3,04	1,04	φ10 c/25 (2R)

Tabela 5.5: Dimensionamento de armadura de cisalhamento combinada com torção

Fonte: Autor

A partir da Tabela 5.5 pode ser notado que a seção de cálculo 2, com b_w de 20 cm, é a seção crítica para o dimensionamento da armadura de cisalhamento combinada com torção no ELU e que para esta seção de cálculo foi adotado inicialmente o arranjo de armadura composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 10 mm, espaçados a cada 12 cm.

A Tabela 5.6 apresenta o resumo de verificação de fadiga da armadura de cisalhamento no ELS, onde $V_{fad,máx}$ e $V_{fad,mín}$ são as forças cortantes máximas e mínimas respectivamente devido à combinação frequente de fadiga, V_c é a parcela de força cortante resistida pelo concreto e $\Delta \sigma_{sw}$ é a variação de tensão normal no aço de armadura transversal.

Seção	V _{fad,máx} (kN)	V _{fad,mín} (kN)	V _c (kN)	∆σ _{sw} (MPa)	A _{sw} (cm²/m)	Arranjo
0	614	338	915	61,9	20,92	φ10 c/15 (4R)
1	520	308	610	83,6	20,46	φ12,5 c/12 (2R)
2	397	200	301	81,0	20,46	φ12,5 c/12 (2R)
3	300	102	296	79,5	16,36	φ12,5 c/15 (2R)
4	195	-4	296	63,9	6,28	φ10 c/25 (2R)
5	105	-93	296	-	6,28	φ10 c/25 (2R)

Tabela 5.6: Resumo de verificação de fadiga da armadura de cisalhamento

Fonte: Autor

Nota-se na Tabela 5.6 que para atender a condição de fadiga da armadura transversal foi necessário adotar o arranjo de armadura com praticamente o dobro da área de aço calculada para o ELU. Pode ser notado que para a seção de cálculo 2, o novo arranjo de armadura é composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 12,5 mm, espaçados a cada 12 cm. Também pode ser observado que para os novos arranjos de armadura adotados não haverá ruptura por fadiga da armadura transversal para a combinação frequente de fadiga, pois as variações de tensões no aço em serviço não atingiram o valor da tensão máxima $\Delta f_{sd,fad}$ permitida pela ABNT NBR 6118:2014, $\Delta f_{sd,fad}$ de 85 MPa para estribos.

O resumo de verificação de deslocamento estimado na longarina VP2 no ELS-DEF é apresentado na Tabela 5.7, onde M_a é o momento fletor na seção crítica para a combinação quase permanente de serviço, M_r é o momento de fissuração do elemento estrutural, I_{eq} é o momento de inércia equivalente da seção fissurada de concreto obtido por meio do modelo proposto por Branson³ (1965) *apud* ACI 318:2014 e apresentado na Equação (5.1), a_i é o deslocamento inicial da estrutura (flecha imediata), a_q é o deslocamento da estrutura devido às cargas variáveis, a_f é o deslocamento máximo da estrutura (flecha final) e a_{cf} é a contraflecha imposta na estrutura na etapa de execução. Os deslocamentos na longarina VP2 foram obtidos por meio do modelo estrutural do tabuleiro e considerando a rigidez do elemento em função da fissuração da seção de concreto.

$$I_{eq} = \left(\frac{M_r}{M_a}\right)^3 I_c + \left[1 - \left(\frac{M_r}{M_a}\right)^3\right] I_{II}$$
(5.1)

³ BRANSON, D. E. Instantaneous and time-dependent deflextions on simple and continuous reinforced concrete beams. HPR Report n. 7, part 1, Alabama Highway Department, Bureau of Public Roads, p. 1-78, aug. 1965

Ma	Mr	I _{eq}	Deslocamento estimada na estrutura (cm)							
(kN.m)	(kN.m)	(cm⁴)	ai	a _q	a _f	a _{cf}	a _{cf} + a _f			
2.375	1.100	10.206.702	3,0	1,8	6,3	-3,0	3,3			

Tabela 5.7: Resumo de deslocamento estimado na longarina

F	ი	n	te	·	Α	u	t	ი	r
	ັ					u	•••	-	

Devido a fissuração da seção de concreto nota-se na Tabela 5.7 que houve perda de 53% da inércia da seção bruta de concreto. Pode ser observado que para a longarina isostática em estudo, de comprimento de vão teórico ℓ de 18 m, o deslocamento máximo estimado na CQP é de 6,3 cm, sendo assim, em conformidade com a ABNT NBR 6118:2014 é respeitado o deslocamento limite de aceitabilidade sensorial de $\ell/250$, no caso, 7,2 cm. Entretanto, para proporcionar o uso adequado da estrutura de Obras de Arte Especiais (OAE), o deslocamento máximo apresentado é superior ao deslocamento limite de $\ell/300$ estabelecido em instrução de projeto IP-DE-C00-001_A do DER-SP (2005), que para este caso em estudo resulta em 6,0 cm. O deslocamento excessivo pode ser parcialmente compensado por contraflecha. Em conformidade com a ABNT NBR 6118:2014, durante a etapa de produção, a viga pode ser produzida com uma contraflecha máxima de $\ell/350$, no caso, 5,1 cm.

Também pode ser verificado na Tabela 5.7 que o deslocamento estimado na longarina devido a parcela de totalidade de cargas móveis com impacto é de 1,8 cm, sendo assim, em conformidade com a instrução de projeto IP-DE-C00-001_A do DER-SP (2005) é respeitado o deslocamento máximo de ℓ /500, no caso, 3,6 cm. Para a viga armada em estudo, a abertura máxima de fissuras na superfície do concreto w_k é de 0,15 mm, deste modo, dentro do limite aceitável de w_k ≤ 0,30 mm, recomendado pela ABNT NBR 6118:2014 para a classe de agressividade ambiental considerada, CAA II.

5.1.3 Dimensionamento de longarina protendida

Para o dimensionamento da longarina VP2 em concreto protendido em estudo foi considerado o sistema de pós-tração com aderência posterior, executado em apenas uma etapa e com ancoragem ativa em ambas extremidades da viga (bilateral). A Figura 5.3 ilustra a elevação longitudinal da viga pré-moldada e apresenta o traçado longitudinal dos três cabos de protensão, usualmente chamado de cablagem. A posição dos cabos nas seções transversais 0 (seção do apoio) e 5 (seção meio do vão) são representadas na Figura 5.4.

Figura 5.3: Elevação longitudinal da viga pré-moldada protendida

Figura 5.4: Posição dos cabos nas seções transversais da viga pré-moldada

Fonte: Autor

A Tabela 5.8 apresenta as principais características da armadura ativa para as situações de protensão limitada e completa, com uso de aço de CP-190 RB e CP-210 RB, onde A_p é a área da seção transversal da armadura longitudinal ativa, P_{ini} é a força de protensão correspondente à força na saída do aparelho de protensão, P₀ é a força de protensão no tempo zero após perdas imediatas e P_{inf} é a força de protensão no tempo infinito após perdas imediatas e progressivas. Para efeito de análise são fixadas o diâmetro nominal da cordoalha, o traçado longitudinal dos cabos e a força de protensão inicial P_{ini} de 1.700 kN/cabo para a situação de protensão limitada e de 2.100 kN/cabo para a situação de protensão completa.

A partir da Tabela 5.8 nota-se que quando comparado os arranjos de cabos para a mesma intensidade de protensão, foi possível reduzir uma cordoalha de aço com diâmetro de 12,7 mm em cada cabo para as vigas isostáticas em estudo com uso de aço CP-210 RB, em relação as com uso de aço CP-190 RB. Também pode ser observado na Tabela 5.8 que para os arranjos adotados com protensão limitada, a média da perda relativa imediata de força de protensão no cabo resultante é de 10,7%, perda relativa progressiva de 18,8% e perda total

de 27,5%. Para os arranjos adotados com protensão completa, foi possível observar que a perda imediata é de 10,3%, perda progressiva de 21,9% e perda total de 29,9%.

A = =	Cabo		Ap	Pini	Po	P _{inf}	
AÇO	Quant.	Arranjo	(cm²/cabo)	(kN/cabo)	(kN/cabo)	(kN/cabo)	
CP-190 RB	3	9 φ12 ,7	9,09	1.200	1.064	857	
CP-210 RB	3	8 φ12,7	8,08	1.200	1.079	883	
CP-190 RB	3	12 φ12,7	12,12	1.700	1.509	1.170	
CP-210 RB	3	11 φ12,7	11,11	1.700	1.541	1.213	
	Aço CP-190 RB CP-210 RB CP-190 RB CP-210 RB	Aço C CP-190 RB 3 CP-210 RB 3 CP-190 RB 3 CP-210 RB 3	Açο Calant Quant Arranjo CP-190 RB 3 9 φ12,7 CP-210 RB 3 8 φ12,7 CP-190 RB 3 12 φ12,7 CP-210 RB 3 12 φ12,7	Açο Catalon Aranjo Apericado Quant. Arranjo Apinov Apinov CP-190 RB 3 9 φ12,7 9,09 CP-210 RB 3 8 φ12,7 8,08 CP-190 RB 3 12 φ12,7 12,12 CP-210 RB 3 11 φ12,7 11,11	Aço Caunt. Aranjo Ap Apini (NN/Cabo) CP-190 RB 3 9 φ12,7 9,09 1.200 CP-210 RB 3 8 φ12,7 8,08 1.200 CP-190 RB 3 12 φ12,7 12,12 1.700 CP-210 RB 3 11 φ12,7 11,11 1.700	Aço C > Ap Pini Po Quant Arranjo Maranjo Ma	

Tabela 5.8: Características da armadura ativa para protensão limitada e completa

Fonte: Autor

As tensões normais na fibra superior σ_2 e inferior σ_1 na seção 5 de concreto para a situação de protensão limitada com uso de aço CP-190 RB e CP-210 RB são apresentadas na Tabela 5.9, Figuras 5.5a e 5.5b, para a situação de protensão completa na Tabela 5.10, Figuras 5.5c e 5.5d. Para a situação de ATO, estado em vazio, foi considerado que a força de protensão é aplicada na seção simples de concreto com idade j de 28 dias e com intensidade de 1,10 P₀. Para a situação em serviço foi considerado que a força de protensão CQP, CF e CR. A convenção de sinais adotada utiliza valores negativos para tensões de compressão e positivos para tensões de tração.

A partir da análise da Tabela 5.9 é possível concluir que a situação de protensão limitada foi atendida para os arranjos adotadas com uso de aço CP-190 RB e CP-210 RB, pois as tensões normais na seção 5 não excedem as tensões limites, assim como foi atendida a situação de protensão completa a partir da análise da Tabela 5.10.

400	Tensões	Tensões em vazio e em serviço (MPa)						
AÇU	normais	ΑΤΟ	CQP	CF				
	σ2	+0,5	-5,2	-5,6				
CP-190 KD	σ1	-14,7	-0,2	+1,6				
	σ2	+0,5	-5,1	-5,5				
	σ1	-14,9	-0,6	+1,2				

Tabela 5.9: Tensões normais nas bordas na seção 5 para protensão limitada

A a a	Tensões	Tensões em vazio e em serviço (MPa)						
AÇO	normais	ΑΤΟ	CF	CR				
	σ2	+0,7	-5,3	-6,2				
CF-190 KB	σ1	-20,8	-2,3	+2,2				
	σ2	+0,8	-5,2	-6,1				
UF-210 KD	σ1	-21,3	-2,9	+1,6				

Tabela 5.10: Tensões normais nas bordas na seção 5 para protensão completa

Fonte: Autor

Figura 5.5: Tensões normais (MPa) na seção 5 para protensão completa e limitada

(a) protensão limitada com uso de CP-190 RB (b) protensão limitada com uso de CP-210 RB ATO CQP CF CQP CF ΑΤΟ +0,5 -5,2 -5,6 +0,5 -5,1 -5,5 -14,7 -0,2 +1,6 -14,9 -0,6 +1,2 (c) protensão completa com uso de CP-190 RB (d) protensão completa com uso de CP-210 RB

Fonte: Autor

A Tabela 5.11 apresenta o resumo de tensões limite no concreto à compressão σ_c e à tração σ_{ct} , para as situações com protensão completa e limitada, no estado em vazio e em serviço. As tensões normais limites no concreto à compressão σ_c e à tração σ_{ct} para o estado em vazio (ATO) são: a) σ_c de -31,5 MPa (ELS-CE); b) σ_{ct} de +4,5 MPa (ELS-F). Para o estado em serviço (CQP, CF e CR) as tensões normais limites são: a) σ_c de -31,5 MPa (ELS-CE); b) σ_{ct} de 0,0 MPa (ELS-D); c) σ_{ct} de +3,4 MPa (ELS-F). Para a situação de protensão limitada o ELS-D é verificado para a CQP e o ELS-F para a CF, já para a situação de protensão completa o ELS-D é verificado para a CF e o ELS-F para a CR.

Estado	Idade do	Tensões limite no concreto (MPa)					
LStado	concreto	σc	σct				
Vazio	28 dias	ELS-CE: -31,5	ELS-F: +4,5				
Convice			ELS-D: 0,0				
Serviço	28 dias	ELS-CE: -31,5	ELS-F: +3,4				

Tabela 5.11: Resumo de tensões limites para protensão completa e limitada

F	0	n	t	e	:	P	1	u	t	0	r	

Para a viga protendida em estudo, a maior variação de tensão normal no aço de armadura ativa $\Delta \sigma_p$ para a combinação frequente de fadiga é de 21,4 MPa. Sendo assim, não haverá ruptura por fadiga da armadura ativa, pois as variações de tensões no aço de protensão em serviço não atingiram o valor da tensão máxima $\Delta f_{pd,fad}$ permitida pela ABNT NBR 6118:2014, $\Delta f_{pd,fad}$ de 110 MPa para pós-tração com cabos curvos. A variação de tensão no aço de armadura ativa $\Delta \sigma_p$ foi determinada no Estádio I, conforme é apresentado na Equação (5.2), onde e_p é a excentricidade do cabo resultante em relação ao CG da seção transversal e α_e é a relação entre os módulos de elasticidade do aço e do concreto, no caso E_p / E_{ci} .

$$\Delta \sigma_{\rm p} = \alpha_{\rm e} \ \frac{\Delta M_{\rm fad}}{I_{\rm c}} \ {\rm e}_{\rm p}$$
(5.2)

A Tabela 5.12 apresenta o resumo de verificação de armadura ativa e passiva de flexão no ELU para as situações de protensão limitada e completa. Nota-se que para as situações de protensão limitada, de modo a atender a condição de $M_{Rd} \ge M_{Sd}$, o arranjo de armadura de flexão é composto por armadura ativa e armadura passiva (7 ϕ 16 mm de CA-50). Para as situações de protensão completa o arranjo de armadura de flexão é composto apenas por armadura ativa. Também pode ser observado que para as situações de protensão completa, o momento fletor resistente de cálculo M_{Rd} é cerca de 18% superior ao momento fletor solicitante de cálculo M_{Sd} .

Protensão	Aço	M _{Sd} (kN.m)	d (cm)	x/d	A _p (cm²)	A _s (cm²)	M _{Rd} (kN.m)
Limitodo	CP-190 RB	5.434	124	0,07	27,27	14,08	5.609
Limitada	CP-210 RB	5.434	124	0,07	24,24	14,08	5.527
Complete	CP-190 RB	5.434	122	0,08	36,36	-	6.384
Completa	CP-210 RB	5.434	122	0,08	33,33	-	6.465

Tabela 5.12: Resumo de verificação de armadura ativa e passiva de flexão no ELU

Fonte: Autor

O resumo de dimensionamento de armadura de cisalhamento combinada com torção no ELU é apresentado na Tabela 5.13 para a situação de protensão limitada e na Tabela 5.14 para a situação de protensão completa, onde V_{Sd} é a força cortante solicitante de cálculo devido às ações permanentes, variáveis e de protensão. De acordo com a ABNT NBR 6118:2014, os efeitos da protensão foram ponderados pelo coeficiente de ponderação γ_p de 0,90 para os casos com efeito favorável e γ_p de 1,20 para os casos com efeito desfavorável.

Em conformidade com ABNT NBR 6118:2014, o dimensionamento da armadura transversal foi realizado considerando a redução da largura resistente em função da presença de bainha metálica na alma da longarina. Pode ser observado nas Tabelas 5.13 e 5.14 que para a seção de cálculo 2 foi adotado inicialmente o arranjo de armadura composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 10 mm, espaçados a cada 17 cm para as situações de protensão limitada e completa.

Seção	V _{sd} (kN)	T _{sd} (kN.m)	$\frac{V_{Sd}}{V_{Rd2}} + \frac{T_{Sd}}{T_{Rd2}}$	b _w (cm)	A _{sw} (cm²/m)	A ₉₀ (cm²/m)	Arranjo
0	987	20	0,24	60	9,11	0,49	φ10 c/20 (4R)
1	850	18	0,33	40	6,07	0,69	φ10 c/17 (2R)
2	675	16	0,59	20	7,12	1,31	φ10 c/17 (2R)
3	563	14	0,50	20	5,15	1,27	φ10 c/20 (2R)
4	425	13	0,37	20	3,04	1,12	φ10 c/25 (2R)
5	310	12	0,29	20	3,04	1,04	φ10 c/25 (2R)

Tabela 5.13: Dimensionamento de armadura transversal para protensão limitada

Fonte: Autor
Seção	V _{Sd} (kN)	T _{sd} (kN.m)	$\frac{V_{Sd}}{V_{Rd2}} + \frac{T_{Sd}}{T_{Rd2}}$	b _w (cm)	A _{sw} (cm²/m)	A ₉₀ (cm²/m)	Arranjo
0	902	20	0,22	60	9,11	0,49	φ10 c/20 (4R)
1	779	18	0,30	40	6,07	0,69	φ10 c/17 (2R)
2	626	16	0,55	20	5,21	1,31	φ10 c/17 (2R)
3	536	14	0,48	20	3,84	1,27	φ10 c/20 (2R)
4	413	13	0,36	20	3,04	1,12	φ10 c/25 (2R)
5	310	12	0,29	20	3,04	1,04	φ10 c/25 (2R)

Tabela 5.14: Dimensionamento de armadura transversal para protensão completa

As Tabelas 5.15 e 5.16 apresentam o resumo de verificação de fadiga da armadura de cisalhamento no ELS para as situações de protensão limitada e completa respectivamente. Nota-se na Tabela 5.15 que para a longarina com protensão limitada, de modo a atender a condição de fadiga da armadura transversal, foi necessário adotar um novo arranjo de armadura para a seção de cálculo 2, este composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 10 mm, espaçados a cada 15 cm. Para a longarina com protensão completa não foi necessário adotar novos arranjos de armadura transversal. Também pode ser verificado nas Tabelas 5.15 e 5.16 que para os arranjos de armadura adotados não haverá ruptura por fadiga da armadura transversal.

Seção	V _{fad,máx} (kN)	V _{fad,mín} (kN)	Vc (kN)	∆σ _{sw} (MPa)	A _{sw} (cm²/m)	Arranjo
0	380	105	1.428	-	15,72	φ10 c/20 (4R)
1	326	113	859	-	10,46	φ10 c/15 (2R)
2	263	66	343	81,5	10,46	φ10 c/15 (2R)
3	224	26	324	73,6	7,86	φ10 c/20 (2R)
4	163	-36	334	-	6,28	φ10 c/25 (2R)
5	105	-93	331	-	6,28	φ10 c/25 (2R)

Tabela 5.15: Verificação de fadiga da armadura transversal para protensão limitada

Seção	V _{fad,máx} (kN)	V _{fad,mín} (kN)	V₀ (kN)	∆σ _{sw} (MPa)	A _{sw} (cm²/m)	Arranjo
0	295	19	1.428	-	15,72	φ10 c/20 (4R)
1	255	42	918	-	9,24	φ10 c/17 (2R)
2	214	17	389	19,5	9,24	φ10 c/17 (2R)
3	196	-2	363	17,4	7,86	φ10 c/20 (2R)
4	151	-48	372	-	6,28	φ10 c/25 (2R)
5	105	-93	368	-	6,28	φ10 c/25 (2R)

Tabela 5.16: Verificação de fadiga da armadura transversal para protensão completa

O resumo de verificação de deslocamento estimado na longarina VP2 no ELS-DEF é apresentado na Tabela 5.17 para as situações de protensão limitada e completa, onde a_p é o deslocamento inicial da estrutura no ato de protensão, devido às parcelas de protensão e de peso próprio da longarina pré-moldada. Pode ser observado que para as longarinas pré-moldadas em estudo, de comprimento de vão teórico ℓ de 18 m, foram respeitados os deslocamentos limites na etapa inicial (contraflecha máxima de ℓ /300) e na etapa final para CQP (flecha com amplitude máxima de ℓ /300), em conformidade com a ABNT NBR 9062:2017 e IP-DE-C00-001_A do DER-SP (2005) respectivamente.

Nota-se na Tabela 5.17 que para as vigas com protensão completa, o momento de fissuração do elemento estrutural M_r é superior ao momento fletor máximo em serviço avaliado para a combinação rara de serviço, M_{CR} de 3.799 kN.m, deste modo o elemento estrutural encontra-se não fissurado, permitindo considerar toda a inércia bruta da seção de concreto. Entretanto, para as vigas com protensão limitada resultou em $M_{CR} > M_r$ e, deste modo, o elemento encontra-se fissurado.

Protonsão	Aco	Mr	Deslocamento estimado na estrutura (cm)					
Trotensao	Açu	(kN.m)	a _p	ai	a _q	a _f		
Limitada	CP-190 RB	3.393	-1,0	0,6	1,8	3,3		
	CP-210 RB	3.461	-1,0	0,6	1,8	3,4		
Completa	CP-190 RB	4.229	-1,4	-0,1	0,9	0,1		
	CP-210 RB	4.344	-1,4	-0,2	0,9	0,1		

Tahola 5	17· Ro	sumo do	doeld	ncamento	ostimado	na	longarina
Tabela J.		Sumo ue	ucait	Juannenito	collinauo	na	iongarma

5.2 TABULEIRO 14,10x25,00 m²

5.2.1 Características geométricas e esforços solicitantes

Nesse exemplo a longarina isostática possui comprimento de vão teórico ℓ de 23 m, comprimento total de 24 m e apresenta seção composta por pré-viga de altura de 140 cm e mesa colaborante moldada no local com espessura de 20 cm. A geometria das seções transversais 0 (seção do apoio) e 5 (seção meio do vão) são ilustradas na Figura 5.6. As características geométricas da longarina na seção transversal 5 são apresentadas na Tabela 5.18. A Tabela 5.19 apresenta o resumo de esforços solicitantes característicos para a longarina VP2. Os esforços solicitantes máximos e mínimos devido às ações variáveis verticais foram amplificados pelo coeficiente de impacto φ de 1,29.

Figura 5.6: Seções transversais da viga pré-moldada

Fonte: Adaptado de PP-MC-C01/030 DER-SP (2005)

Seção	Inicial	Final		
h (cm)	140,0	160,0		
y1 (cm)	71,2	111,4		
A _c (cm ²)	5.480	11.960		
Ic (cm ⁴)	13.445.647	31.028.028		
r	0,50	0,51		

Seção	M _{gk} (kN.m)	M _{qk+} (kN.m)	M _{qk-} (kN.m)	V _{gk} (kN)	V _{qk+} (kN)	V _{qk-} (kN)	T _{gk} (kN.m)	T _{qk+} (kN.m)	T _{qk-} (kN.m)
0	0	13	-59	497	525	-75	0,5	12,7	-13,9
1	1.057	1.129	-99	409	448	-19	0,5	11,4	-12,6
2	1.888	1.891	-86	304	357	-88	0,4	10,4	-11,6
3	2.480	2.381	-76	206	306	-139	0,3	9,6	-10,5
4	2.836	2.653	-70	101	256	-184	0,1	8,4	-8,8
5	2.955	2.739	-71	4	223	-215	0,0	8,0	-7,9

Tabela 5.19: Resumo de esforços solicitantes característicos

5.2.2 Dimensionamento de longarina armada

A Tabela 5.20 apresenta o resumo de dimensionamento de armadura passiva de flexão no ELU para a longarina em concreto armado em estudo. Para o esforço máximo de flexão, que ocorre na seção de cálculo 5, é adotado o arranjo de armadura composto por 27 barras de aço de CA-50 com diâmetro de 25 mm. A Tabela 5.21 apresenta o resumo de verificação de fadiga da armadura passiva de flexão no ELS. Nota-se na Tabela 5.21 que para os arranjos de armadura adotados não haverá ruptura por fadiga da armadura longitudinal.

Seção	M _{Sd} (kN.m)	d (cm)	x/d	A _s (cm²)	Arranjo	ρs	M _{Rd} (kN.m)
0	20	153	0,03	43,45	10 φ25	0,41%	3.234
1	3.121	153	0,03	47,37	10 φ25	0,41%	3.234
2	5.386	151	0,05	83,50	18 φ25	0,74%	5.697
3	6.920	149	0,06	109,35	23 φ25	0,94%	7.143
4	7.808	147	0,07	125,55	26 φ25	1,07%	7.938
5	8.099	147	0,07	130,36	27 φ25	1,11%	8.234

Tabela 5.20: Resumo de dimensionamento de armadura passiva de flexão

Fonte: Autor

O resumo de dimensionamento de armadura de cisalhamento combinada com torção no ELU é apresentado na Tabela 5.22. Nota-se que a seção de cálculo 2 é a seção crítica para o dimensionamento e que para esta seção de cálculo foi adotado inicialmente o arranjo de armadura composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 10 mm, espaçados a cada 12 cm.

Seção	M _{fad,máx} (kN.m)	M _{fad,mín} (kN.m)	Iıı (cm⁴)	∆σ _s (MPa)	A _s (cm²)	Arranjo
0	7	-30	6.483.248	4,6	43,45	10 φ25
1	1.621	1.007	6.483.248	78,6	47,37	10 φ25
2	2.834	1.845	10.661.554	72,8	83,50	18 φ25
3	3.671	2.442	12.934.728	71,7	109,35	23 φ25
4	4.162	2.801	14.182.013	70,4	125,55	26 425
5	4.325	2.920	14.590.399	70,3	130,36	27 φ25

Tabela 5.21: Resumo de verificação de fadiga da armadura passiva de flexão

Tabela 5.22: D	vimensionamento	o de	armadura	de	cisalhamento	combinada	com ⁴	torc	:ão
			annaaana	~~	oroannannorneo	oom sinaaa		u v i v	

Seção	V _{Sd} (kN)	T _{sd} (kN.m)	$\frac{V_{Sd}}{V_{Rd2}} + \frac{T_{Sd}}{T_{Rd2}}$	b _w (cm)	A _{sw} (cm²/m)	A ₉₀ (cm²/m)	Arranjo
0	1.458	20	0,24	60	9,11	0,43	φ10 c/20 (4R)
1	1.224	18	0,31	40	8,81	0,59	φ10 c/12 (2R)
2	946	16	0,52	20	10,18	1,24	φ10 c/12 (2R)
3	737	15	0,42	20	6,82	1,12	φ10 c/15 (2R)
4	521	13	0,31	20	3,24	0,98	φ10 c/25 (2R)
5	339	12	0,22	20	3,04	0,92	φ10 c/25 (2R)

Fonte: Autor

A Tabela 5.23 apresenta o resumo de verificação de fadiga da armadura de cisalhamento no ELS. Nota-se que para a seção de cálculo 2, o novo arranjo de armadura é composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 12,5 mm, espaçados a cada 12 cm. Também pode ser observado que para os arranjos de armadura adotados não haverá ruptura por fadiga da armadura transversal.

O resumo de verificação de deslocamento estimado na longarina VP2 no ELS-DEF é apresentado na Tabela 5.24. Pode ser observado que para a longarina isostática em estudo, de comprimento de vão teórico *l* de 23 m, o deslocamento máximo estimado de 11,4 cm é superior ao deslocamento limite de *l*/300, no caso, 7,7 cm. O deslocamento excessivo é parcialmente compensado por contraflecha de 5,0 cm. Também pode ser verificado que o deslocamento devido a parcela de totalidade de cargas móveis é de 3,1 cm e que atende ao limite estabelecido de *l*/500, no caso, 4,6 cm. Para a viga armada em estudo, a abertura

máxima de fissuras na superfície do concreto w_k é de 0,14 mm, deste modo, dentro do limite aceitável de $w_k \le 0,30$ mm.

Seção	V _{fad,máx} (kN)	V _{fad,mín} (kN)	V _c (kN)	∆σ _{sw} (MPa)	A _{sw} (cm²/m)	Arranjo
0	759	459	1.045	82,1	20,92	φ10 c/15 (4R)
1	633	400	697	82,8	20,46	φ12,5 c/12 (2R)
2	482	260	344	80,0	20,46	φ12,5 c/12 (2R)
3	359	137	339	84,3	16,36	φ12,5 c/15 (2R)
4	229	9	335	74,7	6,28	φ10 c/25 (2R)
5	115	-104	335	-	6,28	φ10 c/25 (2R)

Tabela 5.23: Resumo de verificação de fadiga da armadura de cisalhamento

Fonte: Autor

Tabela 5.24: Resumo de deslocamento estimado na longarina

M _a M _r		I _{eq}	Deslocamento estimado na estrutura (cm)						
(kN.m)	(kN.m)	(cm⁴)	ai	a _q	a _f	a _{cf}	a _{cf} + a _f		
3.777	1.374	15.382.086	5,4	3,1	11,4	-5,0	6,4		

Fonte: Autor

5.2.3 Dimensionamento de longarina protendida

A posição dos cabos nas seções transversais 0 (seção do apoio) e 5 (seção meio do vão) para a longarina em concreto protendido em estudo são representadas na Figura 5.7. A Tabela 5.25 apresenta as principais características da armadura ativa para as situações de protensão limitada e completa, com uso de aço de CP-190 RB e CP-210 RB. Para efeito de análise são fixados o diâmetro nominal da cordoalha, o traçado longitudinal dos cabos e a força de protensão inicial P_{ini} de 1.700 kN/cabo para a situação de protensão limitada e de 2.100 kN/cabo para a situação de protensão completa.

As tensões normais na fibra superior σ_2 e inferior σ_1 na seção 5 de concreto para a situação de protensão limitada com uso de aço CP-190 RB e CP-210 RB são apresentadas na Tabela 5.26 e para a situação de protensão completa na Tabela 5.27. A partir da análise da Tabela 5.26 é possível concluir que a situação de protensão limitada foi atendida para os arranjos adotados com uso de aço CP-190 RB e CP-210 RB, pois as tensões normais na seção 5 não excedem as tensões limites, assim como, foi atendida a situação de protensão completa a partir da análise da Tabela 5.27.

Figura 5.7: Posição dos cabos nas seções transversais da viga pré-moldada

Fonte: Autor

Tabela 5.25:	Características o	da armadura	ativa para	protensão	limitada e comple	eta

Drotonção	A a a	Cabo		Ap	P _{ini}	Po	Pinf	
FIOLENSAU	AÇU	Quant.	Arranjo	(cm²/cabo)	(kN/cabo)	(kN/cabo)	(kN/cabo)	
Limitada	CP-190 RB	3	12 φ12,7	12,12	1.700	1.544	1.212	
Limitada	CP-210 RB	3	11 φ12,7	11,11	1.700	1.557	1.243	
Complete	CP-190 RB	3	15 φ12,7	15,15	2.100	1.894	1.432	
Completa	CP-210 RB	3	14 φ12,7	14,14	2.100	1.907	1.461	

1	Tabela 5.26: Tens	ões normais	nas bordas	na seção 5	para	protensão	limitada
----------	-------------------	-------------	------------	------------	------	-----------	----------

A a a	Tensões	Tensões en	Tensões em vazio e em serviço (MPa)				
AÇU	normais	ΑΤΟ	CQP	CF			
CP-190 RB	σ2	-0,1	-7,4	-7,9			
	σ1	-18,8	-0,2	+1,8			
	σ2	0,0	-7,4	-7,9			
CP-210 RB	σ1	-19,0	-0,6	+1,4			

A a a	Tensões	Tensões em vazio e em serviço (MPa)				
Açu	normais	ΑΤΟ	CF	CR		
CP-190 RB	σ2	+1,0	-6,9	-8,0		
	σ1	-24,2	-1,4	+3,4		
	σ2	+1,0	-6,9	-8,0		
UF-210 KD	σ1	-24,4	-1,8	+3,0		

Tabela 5.27: Tensões normais nas bordas na seção 5 para protensão completa

Para a viga protendida em estudo, a maior variação de tensão normal no aço de armadura ativa $\Delta \sigma_p$ para a combinação frequente de fadiga é de 23,5 MPa, deste modo, não haverá ruptura por fadiga da armadura ativa.

A Tabela 5.28 apresenta o resumo de verificação de armadura ativa e passiva de flexão no ELU para as situações de protensão limitada e completa. Nota-se que para as situações de protensão limitada o arranjo de armadura de flexão é composto por armadura ativa e armadura passiva (6 ϕ 16 mm de CA-50). Para as situações de protensão completa o arranjo de armadura de flexão é composto apenas por armadura ativa.

Protensão	Aço	M _{Sd} (kN.m)	d (cm)	x/d	A _p (cm²)	A _s (cm²)	M _{Rd} (kN.m)
Limitada	CP-190 RB	8.099	143	0,08	36,36	12,07	8.230
Limitada	CP-210 RB	8.099	143	0,08	33,33	12,07	8.325
Completa	CP-190 RB	8.099	142	0,09	45,45	-	9.265
	CP-210 RB	8.099	142	0,09	42,42	-	9.547

Tabela 5.28: Resumo de verificação de armadura ativa e passiva de flexão no ELU

Fonte: Autor

O resumo de dimensionamento de armadura de cisalhamento combinada com torção no ELU é apresentado na Tabela 5.29 para a situação de protensão limitada e na Tabela 5.30 para a situação de protensão completa. Pode ser observado nas Tabelas 5.29 e 5.30 que para a seção de cálculo 2 foi adotado inicialmente o arranjo de armadura composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 10 mm, espaçados a cada 17 cm para a situação de protensão limitada e espaçados a cada 20 cm para a situação de protensão completa.

Seção	V _{Sd} (kN)	T _{Sd} (kN.m)	$\frac{V_{Sd}}{V_{Rd2}} + \frac{T_{Sd}}{T_{Rd2}}$	b _w (cm)	A _{sw} (cm²/m)	A ₉₀ (cm²/m)	Arranjo
0	1.144	20	0,24	60	9,11	0,43	φ10 c/20 (4R)
1	966	18	0,32	40	6,07	0,59	φ10 c/17 (2R)
2	762	16	0,58	20	6,93	1,24	φ10 c/17 (2R)
3	629	15	0,49	20	4,83	1,12	φ10 c/20 (2R)
4	485	13	0,37	20	3,04	0,98	φ10 c/25 (2R)
5	339	12	0,27	20	3,04	0,92	φ10 c/25 (2R)

Tabela 5.29: Dimensionamento de armadura transversal para protensão limitada

Tabala 5 20. Dir	moncionamonto de	armadura	tranevareal	nara	nrotonção	comp	lata
Tabela 5.50. Dli	mensionamento de	; al mauul a	11 11 2 2 2 3 1	para	protensau	comp	iela

Seção	V _{Sd} (kN)	T _{sd} (kN.m)	$\frac{V_{Sd}}{V_{Rd2}} + \frac{T_{Sd}}{T_{Rd2}}$	b _w (cm)	A _{sw} (cm²/m)	A ₉₀ (cm²/m)	Arranjo
0	1.087	20	0,23	60	9,11	0,43	φ10 c/20 (4R)
1	919	18	0,31	40	6,07	0,59	φ10 c/20 (2R)
2	729	16	0,56	20	5,80	1,24	φ10 c/20 (2R)
3	610	15	0,47	20	4,03	1,12	φ10 c/25 (2R)
4	479	13	0,36	20	3,04	0,98	φ10 c/25 (2R)
5	339	12	0,27	20	3,04	0,92	φ10 c/25 (2R)

Fonte: Autor

As Tabelas 5.31 e 5.32 apresentam o resumo de verificação de fadiga da armadura de cisalhamento no ELS para as situações de protensão limitada e completa respectivamente. Nota-se na Tabela 5.31 que para a longarina com protensão limitada foi necessário adotar um novo arranjo de armadura para a seção de cálculo 2, este composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 10 mm, espaçados a cada 15 cm. Para a longarina com protensão completa não foi necessário adotar novos arranjos de armadura transversal. Também pode ser verificado nas Tabelas 5.31 e 5.32 que para os arranjos de armadura adotados não haverá ruptura por fadiga da armadura transversal.

Seção	V _{fad,máx} (kN)	V _{fad,mín} (kN)	Vc (kN)	∆σ _{sw} (MPa)	A _{sw} (cm²/m)	Arranjo
0	445	145	1.625	-	15,72	φ10 c/20 (4R)
1	375	141	988	-	10,46	φ10 c/15 (2R)
2	299	77	393	80,1	10,46	φ10 c/15 (2R)
3	251	29	372	67,7	7,86	φ10 c/20 (2R)
4	193	-27	384	2,0	6,28	φ10 c/25 (2R)
5	115	-104	380	-	6,28	φ10 c/25 (2R)

Tabela 5.31: Verificação de fadiga da armadura transversal para protensão limitada

Tabela 5.32: Verificação de fadiga da armadura transversal para protensão completa

Seção	V _{fad,máx} (kN)	V _{fad,mín} (kN)	Vc (kN)	∆σ _{sw} (MPa)	A _{sw} (cm²/m)	Arranjo
0	388	88	1.625	-	15,72	φ10 c/20 (4R)
1	328	95	1.042	-	7,86	φ10 c/20 (2R)
2	266	43	420	58,0	7,86	φ10 c/20 (2R)
3	232	9	395	44,3	6,28	φ10 c/25 (2R)
4	187	-33	406	-	6,28	φ10 c/25 (2R)
5	115	-104	402	-	6,28	φ10 c/25 (2R)

Fonte: Autor

O resumo de verificação de deslocamento estimado na longarina VP2 no ELS-DEF é apresentado na Tabela 5.33 para as situações de protensão limitada e completa. Pode ser observado que para as longarinas pré-moldadas em estudo, de comprimento de vão teórico ℓ de 23 m, foram respeitados os deslocamentos limites na etapa inicial e na etapa final. O momento fletor solicitante máximo em serviço é de 5.695 kN.m. Para a situação de protensão completa o elemento estrutural encontra-se não fissurado, pois M_r > M_{CR}. Entretanto, para a situação de protensão limitada o elemento estrutural encontra-se fissurado, pois M_{cR} > M_r.

Brotonsão	Aco	Mr	Deslocamento estimado na estrutura (cn				
FIOLENSAU	Açu	(kN.m)	a _p	ai	a _q	a _f	
	CP-190 RB	5.194	-1,8	0,9	3,1	4,4	
Limitada	CP-210 RB	5.290	-1,9	0,9	3,1	4,6	
Completa	CP-190 RB	5.885	-2,2	0,0	1,3	0,7	
	CP-210 RB	5.978	-2,2	-0,0	1,3	0,7	

Tabela 5.33: Resumo de deslocamento estimado na longarina

5.3 TABULEIRO 14,10x30,00 m²

5.3.1 Características geométricas e esforços solicitantes

Nesse exemplo a longarina possui comprimento de vão teórico ℓ de 28 m, comprimento total de 29 m e seção composta por pré-viga de altura de 180 cm e mesa colaborante moldada no local com espessura de 20 cm. A geometria das seções transversais 0 e 5 são ilustradas na Figura 5.8. As características geométricas da longarina na seção transversal 5 são apresentadas na Tabela 5.34. A Tabela 5.35 apresenta o resumo de esforços solicitantes característicos para a longarina VP2. Os esforços solicitantes devido às ações variáveis verticais foram amplificados pelo coeficiente de impacto φ de 1,27.

Figura 5.8: Seções transversais da viga pré-moldada

Fonte: Adaptado de PP-MC-C01/008 DER-SP (2005)

Seção	Inicial	Final
h (cm)	180,0	200,0
y1 (cm)	90,6	138,0
A _c (cm ²)	6.280	12.760
I _c (cm ⁴)	25.748.348	55.487.592
r	0,51	0,54

Tabela 5.34: Características geométricas da seção transversal 5

 Tabela 5.35: Resumo de esforços solicitantes característicos

Seção	M _{gk} (kN.m)	M _{qk+} (kN.m)	M _{qk-} (kN.m)	V _{gk} (kN)	V _{qk+} (kN)	V _{qk-} (kN)	T _{gk} (kN.m)	T _{qk+} (kN.m)	T _{qk-} (kN.m)
0	0	15	-61	636	580	-73	0,5	12,0	-13,6
1	1.643	1.504	-100	521	490	-26	0,5	10,6	-12,3
2	2.931	2.514	-90	388	391	-104	0,4	10,0	-11,6
3	3.848	3.161	-82	262	333	-156	0,3	9,2	-10,4
4	4.399	3.517	-90	129	279	-202	0,1	8,4	-8,8
5	4.584	3.630	-92	4	242	-235	0,0	8,1	-8,1

Fonte: Autor

5.3.2 Dimensionamento de longarina armada

A Tabela 5.36 apresenta o resumo de dimensionamento de armadura passiva de flexão no ELU para a longarina em concreto armado em estudo. Para o esforço máximo de flexão, que ocorre na seção de cálculo 5, é adotado o arranjo de armadura composto por 31 barras de aço de CA-50 com diâmetro de 25 mm. A Tabela 5.37 apresenta o resumo de verificação de fadiga da armadura passiva de flexão no ELS. Nota-se que para os arranjos de armadura adotados não haverá ruptura por fadiga da armadura longitudinal.

O resumo de dimensionamento de armadura de cisalhamento combinada com torção no ELU é apresentado na Tabela 5.38. Nota-se que a seção de cálculo 2 é a seção crítica para o dimensionamento e que para esta seção de cálculo foi adotado inicialmente o arranjo de armadura composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 10 mm, espaçados a cada 15 cm.

Seção	M _{Sd} (kN.m)	d (cm)	x/d	A _s (cm²)	Arranjo	ρs	M _{Rd} (kN.m)
0	23	192	0,02	49,18	12 φ25	0,46%	4.872
1	4.475	192	0,02	54,09	12 φ25	0,46%	4.872
2	7.728	190	0,04	95,05	20 φ25	0,77%	7.982
3	9.936	188	0,05	124,15	26 φ25	1,00%	10.214
4	11.214	186	0,06	142,10	30 φ25	1,15%	11.618
5	11.633	186	0,06	147,55	31 φ25	1,19%	11.995

Tabela 5.36: Resumo de dimensionamento de armadura passiva de flexão

Tabela 5.37: Resumo de verificação de fadiga da armadura passiva de flexão
--

Seção	M _{fad,máx} (kN.m)	M _{fad,mín} (kN.m)	Iıı (cm⁴)	∆σ _s (MPa)	A _s (cm²)	Arranjo
0	8	-30	12.331.866	3,2	49,18	12 φ25
1	2.395	1.593	12.331.866	67,9	54,09	12 φ25
2	4.188	2.886	19.066.498	65,1	95,05	20 φ25
3	5.428	3.807	23.484.793	66,1	124,15	26 φ25
4	6.157	4.353	26.184.058	64,1	142,10	30 φ25
5	6.399	4.538	26.822.300	64,3	147,55	31 φ25

Fonte: Autor

Tabela 5.38: Dimensionamento de armadura de cisalhamento combinada com torção

Seção	V _{Sd} (kN)	T _{Sd} (kN.m)	$\frac{V_{Sd}}{V_{Rd2}} + \frac{T_{Sd}}{T_{Rd2}}$	b _w (cm)	A _{sw} (cm²/m)	A ₉₀ (cm²/m)	Arranjo
0	1.729	19	0,22	60	9,11	0,33	φ10 c/20 (4R)
1	1.438	17	0,28	40	7,49	0,45	φ10 c/15 (2R)
2	1.110	16	0,47	20	9,10	0,94	φ10 c/15 (2R)
3	854	14	0,38	20	5,78	0,85	φ10 c/20 (2R)
4	594	13	0,28	20	3,04	0,77	φ10 c/25 (2R)
5	368	12	0,19	20	3,04	0,74	φ10 c/25 (2R)

A Tabela 5.39 apresenta o resumo de verificação de fadiga da armadura de cisalhamento no ELS. Nota-se que para a seção de cálculo 2, o novo arranjo de armadura é composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 12,5 mm, espaçados a cada 12 cm. Também pode ser observado que para os arranjos de armadura adotados não haverá ruptura por fadiga da armadura transversal.

Seção	V _{fad,máx} (kN)	V _{fad,mín} (kN)	Vc (kN)	∆σ _{sw} (MPa)	A _{sw} (cm²/m)	Arranjo
0	926	600	1.312	74,7	20,92	φ10 c/15 (4R)
1	766	508	874	73,0	20,46	φ12,5 c/12 (2R)
2	583	336	433	70,8	20,46	φ12,5 c/12 (2R)
3	429	184	428	77,6	16,36	φ12,5 c/15 (2R)
4	269	28	424	54,4	6,28	φ10 c/25 (2R)
5	125	-114	424	-	6,28	φ10 c/25 (2R)

Tabela 5.39: Resumo de verificação de fadiga da armadura de cisalhamento

Fonte: Autor

O resumo de verificação de deslocamento estimado na longarina VP2 no ELS-DEF é apresentado na Tabela 5.40. Nota-se que para a longarina isostática em estudo, de comprimento de vão teórico l de 28 m, o deslocamento máximo estimado de 12,4 cm é superior ao deslocamento limite de l/300, no caso, 9,3 cm. O deslocamento excessivo é parcialmente compensado por contraflecha de 5,0 cm. Também pode ser verificado que o deslocamento devido a parcela de totalidade de cargas móveis é de 3,4 cm e que atende ao limite estabelecido de l/500, no caso, 5,6 cm. Para a viga armada em estudo, a abertura máxima de fissuras na superfície do concreto w_k é de 0,14 mm, deste modo, dentro do limite aceitável de w_k \leq 0,30 mm.

Tabela 5.40: Resumo de deslocamento estimado na longarina

Ma	Mr	I _{eq} Deslocame		camento e	iento estimado na estrutura (cm)			
(kN.m)	(kN.m)	(cm⁴)	ai	a _q	a _f	a _{cf}	a _{cf} + a _f	
5.673	1.984	28.481.330	5,9	3,4	12,4	-5,0	7,4	

5.3.3 Dimensionamento de longarina protendida

A posição dos cabos nas seções transversais 0 (seção do apoio) e 5 (seção meio do vão) para a longarina em concreto protendido em estudo são representadas na Figura 5.9. A Tabela 5.41 apresenta as principais características da armadura ativa para as situações de protensão limitada e completa, com uso de aço de CP-190 RB e CP-210 RB. Para efeito de análise são fixadas o diâmetro nominal da cordoalha, o traçado longitudinal dos cabos e a força de protensão inicial P_{ini} de 1.400 kN/cabo para a situação de protensão limitada e de 1.700 kN/cabo para a situação de protensão completa.

Figura 5.9: Posição dos cabos nas seções transversais da viga pré-moldada

Fonte: Autor

A a a	Cabo		Ap	P _{ini}	Po	P _{inf}	
Aço	Quant.	Arranjo	(cm²/cabo)	(kN/cabo)	(kN/cabo)	(kN/cabo)	
CP-190 RB	4	10 φ12,7	10,10	1.400	1.284	1.012	
CP-210 RB	4	9 φ12,7	9,09	1.400	1.293	1.032	
CP-190 RB	4	12 φ12,7	12,12	1.700	1.550	1.176	
CP-210 RB	4	11 φ12,7	11,11	1.700	1.560	1.206	
	Aço CP-190 RB CP-210 RB CP-190 RB CP-210 RB	Aço C Quant. Quant. CP-190 RB 4 CP-210 RB 4 CP-190 RB 4 CP-210 RB 4	Açο Calabo Quant. Arranjo CP-190 RB 4 10 φ12,7 CP-210 RB 4 9 φ12,7 CP-190 RB 4 12 φ12,7 CP-210 RB 4 11 φ12,7	Aço Cabo Ap Quant. Arranjo Ap CP-190 RB 4 10 φ12,7 10,10 CP-210 RB 4 9 φ12,7 9,09 CP-190 RB 4 12 φ12,7 12,12 CP-210 RB 4 11 φ12,7 11,11	Aço Caunt. Aranjo Ap, cm²/cabo Pini (kN/cabo) CP-190 RB 4 10 φ12,7 10,10 1.400 CP-210 RB 4 9 φ12,7 9,09 1.400 CP-190 RB 4 12 φ12,7 12,12 1.700 CP-210 RB 4 11 φ12,7 11,11 1.700	Aço Caunt. Aranjo Ap, cm²/cabo Pini (kN/cabo) Po (kN/cabo) CP-190 RB 4 10 φ12,7 10,10 1.400 1.284 CP-210 RB 4 9 φ12,7 9,09 1.400 1.293 CP-190 RB 4 12 φ12,7 12,12 1.700 1.550 CP-210 RB 4 11 φ12,7 11,11 1.700 1.560	

Tabela 5.41: Características da armadura ativa para protensão limitada e completa

As tensões normais na fibra superior σ_2 e inferior σ_1 na seção 5 de concreto para a situação de protensão limitada com uso de aço CP-190 RB e CP-210 RB são apresentadas na Tabela 5.42 e para a situação de protensão completa na Tabela 5.43. A partir da análise

Fonte: Autor

da Tabela 5.42 é possível concluir que a situação de protensão limitada foi atendida para os arranjos adotados com uso de aço CP-190 RB e CP-210 RB, pois as tensões normais na seção 5 não excedem as tensões limites, assim como foi atendida a situação de protensão completa a partir da análise da Tabela 5.43.

A co	Tensões	Tensões em vazio e em serviço (MPa				
Açu	normais	ΑΤΟ	CQP	CF		
	σ2	+0,2	-7,7	-8,2		
CF-190 KB	σ1	-18,3	-0,1	+1,9		
	σ2	+0,2	-7,6	-8,1		
GF-210 KB	σ1	-18,5	-0,2	+1,5		

Tabela 5.42: Tensões normais nas bordas na seção 5 para protensão limitada

Fonte: Autor

Tabela 5.43: Tensões normais nas bordas na seção 5 para protensão completa

A a a	Tensões	Tensões em	n vazio e em se	io e em serviço (MPa)			
AÇO	normais	ΑΤΟ	CF	CR			
	σ2	+1,3	-7,1	-8,4			
CF-190 KD	σ1	-23,2	-1,0	+3,4			
	σ2	+1,4	-7,1	-8,3			
GF-210 KD	σ1	-23,4	-1,5	+2,9			

Fonte: Autor

Para a viga protendida em estudo, a maior variação de tensão normal no aço de armadura ativa $\Delta \sigma_p$ para a combinação frequente de fadiga é de 22,2 MPa, deste modo, não haverá ruptura por fadiga da armadura ativa.

A Tabela 5.44 apresenta o resumo de verificação de armadura ativa e passiva de flexão no ELU para as situações de protensão limitada e completa. Nota-se que para as situações de protensão limitada o arranjo de armadura de flexão é composto por armadura ativa e armadura passiva (7 ¢16 mm de CA-50). Para as situações de protensão completa o arranjo de armadura de flexão é composto apenas por armadura ativa.

Protensão	Aço	M _{Sd} (kN.m)	d (cm)	x/d	A _p (cm²)	A _s (cm²)	M _{Rd} (kN.m)
Limitada	CP-190 RB	11.633	183	0,07	40,40	14,08	11.802
Limitada	CP-210 RB	11.633	183	0,07	36,36	14,08	11.748
Complete	CP-190 RB	11.633	182	0,07	48,48	-	12.743
Completa	CP-210 RB	11.633	182	0,07	44,44	-	12.905

Tabela 5.44: Resumo de verificação de armadura ativa e passiva de flexão no ELU

O resumo de dimensionamento de armadura de cisalhamento combinada com torção no ELU é apresentado na Tabela 5.45 para a situação de protensão limitada e na Tabela 5.46 para a situação de protensão completa. Pode ser observado nas Tabelas 5.45 e 5.46 que para a seção de cálculo 2 foi adotado o arranjo de armadura composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 10 mm, espaçados a cada 20 cm para as situações de protensão limitada e completa.

Seção	V _{Sd} (kN)	T _{sd} (kN.m)	$\frac{V_{Sd}}{V_{Rd2}} + \frac{T_{Sd}}{T_{Rd2}}$	b _w (cm)	A _{sw} (cm²/m)	A ₉₀ (cm²/m)	Arranjo
0	1.324	19	0,22	60	9,11	0,33	φ10 c/20 (4R)
1	1.110	17	0,29	40	6,07	0,45	φ10 c/20 (2R)
2	880	16	0,52	20	5,70	0,94	φ10 c/20 (2R)
3	723	14	0,43	20	3,73	0,85	φ10 c/25 (2R)
4	546	13	0,32	20	3,04	0,77	φ10 c/25 (2R)
5	368	12	0,23	20	3,04	0,74	φ10 c/25 (2R)

Tabela 5.45: Dimensionamento de armadura transversal para protensão limitada

Fonte: Autor

As Tabelas 5.47 e 5.48 apresentam o resumo de verificação de fadiga da armadura de cisalhamento no ELS para as situações de protensão limitada e completa respectivamente. Nota-se na Tabela 5.47 que para a longarina com protensão limitada foi necessário adotar um novo arranjo de armadura para a seção de cálculo 2, este composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 10 mm, espaçados a cada 15 cm. Para a longarina com protensão completa não foi necessário adotar novos arranjos de armadura transversal. Também pode ser verificado nas Tabelas 5.47 e 5.48 que para os arranjos de armadura adotados não haverá ruptura por fadiga da armadura transversal.

Seção	V _{Sd} (kN)	T _{Sd} (kN.m)	$\frac{V_{Sd}}{V_{Rd2}} + \frac{T_{Sd}}{T_{Rd2}}$	b _w (cm)	A _{sw} (cm²/m)	A ₉₀ (cm²/m)	Arranjo
0	1.259	19	0,21	60	9,11	0,33	φ10 c/20 (4R)
1	1.057	17	0,28	40	6,07	0,45	φ10 c/20 (2R)
2	843	16	0,50	20	4,68	0,94	φ10 c/20 (2R)
3	701	14	0,42	20	3,04	0,85	φ10 c/25 (2R)
4	539	13	0,31	20	3,04	0,77	φ10 c/25 (2R)
5	368	12	0,23	20	3,04	0,74	φ10 c/25 (2R)

Tabela 5.46: Dimensionamento de armadura transversal para protensão completa

	Tabela 5.47: Verificad	ção de fadig	a da armadura tr	ransversal para	protensão limitada
--	------------------------	--------------	------------------	-----------------	--------------------

Seção	V _{fad,máx} (kN)	V _{fad,mín} (kN)	Vc (kN)	∆σ _{sw} (MPa)	A _{sw} (cm²/m)	Arranjo
0	521	195	2.040	-	15,72	φ10 c/20 (4R)
1	438	180	1.242	-	10,46	φ10 c/15 (2R)
2	354	106	501	64,4	10,46	φ10 c/15 (2R)
3	298	53	474	50,3	7,86	φ10 c/20 (2R)
4	222	-19	489	-	6,28	φ10 c/25 (2R)
5	125	-114	485	-	6,28	φ10 c/25 (2R)

Fonte: Autor

Tabela 5.48: Verificação de fadiga da armadura transversal para protensão completa

Seção	V _{fad,máx} (kN)	V _{fad,mín} (kN)	Vc (kN)	∆σ _{sw} (MPa)	A _{sw} (cm²/m)	Arranjo
0	456	130	2.040	-	15,72	φ10 c/20 (4R)
1	385	127	1.312	-	7,86	φ10 c/20 (2R)
2	317	69	532	42,1	7,86	φ10 c/20 (2R)
3	276	32	501	27,1	6,28	φ10 c/25 (2R)
4	214	-27	515	-	6,28	φ10 c/25 (2R)
5	125	-114	510	-	6,28	φ10 c/25 (2R)

O resumo de verificação de deslocamento estimado na longarina VP2 no ELS-DEF é apresentado na Tabela 5.49 para as situações de protensão limitada e completa. Pode ser observado que para as longarinas pré-moldadas em estudo, de comprimento de vão teórico ℓ de 28 m, foram respeitados os deslocamentos limites na etapa inicial e na etapa final. O momento fletor solicitante máximo em serviço é de 8.214 kN.m. Para a situação de protensão completa o elemento estrutural encontra-se não fissurado, pois M_r > M_{CR}. Entretanto, para a situação de protensão limitada o elemento estrutural encontra-se fissurado, pois M_r > M_r.

Protonsão	Mr Mr		Deslocamento estimado na estrutura (cr				
FIOLENSAU	Açu	(kN.m)	a _p	ai	a _q	a _f	
Limitada	CP-190 RB	7.506	-2,0	1,1	3,4	5,0	
Limitada	CP-210 RB	7.615	-2,0	1,1	3,4	5,1	
Complete	CP-190 RB	8.397	-2,4	0,2	1,4	1,2	
Completa	CP-210 RB	8.563	-2,4	0,2	1,4	1,2	

Tabela 5.49: Resumo de deslocamento estimado na longarina

Fonte: Autor

5.4 TABULEIRO 14,10x35,00 m²

5.4.1 Características geométricas e esforços solicitantes

Nesse exemplo a longarina isostática possui comprimento de vão teórico ℓ de 33 m, comprimento total de 34 m e apresenta seção composta por pré-viga de altura de 200 cm e mesa colaborante moldada no local com espessura de 20 cm. A geometria das seções transversais 0 (seção do apoio) e 5 (seção meio do vão) são ilustradas na Figura 5.10. As características geométricas da longarina na seção transversal 5 são apresentadas na Tabela 5.50.

Seção	Inicial	Final
h (cm)	200,0	220,0
y1 (cm)	100,4	150,9
A _c (cm ²)	6.680	13.160
Ic (cm ⁴)	33.742.618	70.925.382
r	0,51	0,55

Tabela 5.50: Características geométricas da seção transversal 5

Fonte: Autor

Figura 5.10: Seções transversais da viga pré-moldada

Fonte: Adaptado de PP-MC-C01/012 DER-SP (2005)

A Tabela 5.51 apresenta o resumo de esforços solicitantes característicos para a longarina VP2. Os esforços solicitantes máximos e mínimos devido às ações variáveis verticais foram amplificados pelo coeficiente de impacto φ de 1,26.

Seção	M _{gk} (kN.m)	M _{qk+} (kN.m)	M _{qk-} (kN.m)	V _{gk} (kN)	V _{qk+} (kN)	V _{qk-} (kN)	T _{gk} (kN.m)	T _{qk+} (kN.m)	T _{qk-} (kN.m)
0	0	16	-63	769	626	-71	0,6	11,9	-14,4
1	2.337	1.889	-99	628	521	-32	0,6	10,6	-13,2
2	4.163	3.143	-89	468	417	-120	0,4	10,1	-12,4
3	5.466	3.938	-85	315	355	-173	0,3	9,2	-11,0
4	6.247	4.376	-94	156	298	-217	0,2	8,5	-9,1
5	6.509	4.516	-96	4	258	-252	0,0	8,3	-8,3

Tabela 5.51: Resumo de esforços solicitantes característicos

Fonte: Autor

5.4.2 Dimensionamento de longarina armada

A Tabela 5.52 apresenta o resumo de dimensionamento de armadura passiva de flexão no ELU para a longarina em concreto armado em estudo. Para o esforço máximo de flexão, que ocorre na seção de cálculo 5, é adotado o arranjo de armadura composto por 38 barras de aço de CA-50 com diâmetro de 25 mm. A Tabela 5.53 apresenta o resumo de verificação de fadiga da armadura passiva de flexão no ELS. Nota-se que para os arranjos de armadura adotados não haverá ruptura por fadiga da armadura longitudinal.

Seção	M _{Sd} (kN.m)	d (cm)	x/d	A _s (cm²)	Arranjo	ρs	M _{Rd} (kN.m)
0	25	212	0,03	60,48	14 φ25	0,52%	6.273
1	5.988	212	0,03	65,61	14 φ25	0,52%	6.273
2	10.335	208	0,05	117,88	25 φ25	0,93%	10.897
3	13.286	206	0,06	151,87	32 φ25	1,19%	13.738
4	14.999	204	0,07	173,78	36 ф25	1,34%	15.253
5	15.562	203	0,07	181,44	38 ф25	1,42%	15.994

Tabela 5.52: Resumo de dimensionamento de armadura passiva de flexão

Fonte: Autor

Tabela 5.53: Resumo de verificação de fadiga da armadura passiva de flex
--

Seção	M _{fad,máx} (kN.m)	M _{fad,mín} (kN.m)	Iıı (cm⁴)	∆σ₅ (MPa)	A _s (cm²)	Arranjo
0	8	-31	17.371.940	2,6	60,48	14 φ25
1	3.281	2.287	17.371.940	65,7	65,61	14 φ25
2	5.735	4.119	28.138.568	61,5	117,88	25 φ25
3	7.435	5.423	34.044.892	60,9	151,87	32 φ25
4	8.436	6.200	37.092.502	60,5	173,78	36 ф25
5	8.768	6.462	38.533.197	59,3	181,44	38 ф25
4 5	8.436 8.768	6.200 6.462	37.092.502 38.533.197	60,5 59,3	173,78	36 φ25 38 φ25

Fonte: Autor

O resumo de dimensionamento de armadura de cisalhamento combinada com torção no ELU é apresentado na Tabela 5.54. Nota-se que a seção de cálculo 2 é a seção crítica para o dimensionamento e que para esta seção de cálculo foi adotado o arranjo de armadura composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 10 mm, espaçados a cada 12 cm.

A Tabela 5.55 apresenta o resumo de verificação de fadiga da armadura de cisalhamento no ELS. Nota-se que para a seção de cálculo 2, o novo arranjo de armadura é composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 12,5 mm, espaçados a cada 12 cm. Também pode ser observado que para os arranjos de armadura adotados não haverá ruptura por fadiga da armadura transversal.

Seção	V _{Sd} (kN)	T _{sd} (kN.m)	$\frac{V_{Sd}}{V_{Rd2}} + \frac{T_{Sd}}{T_{Rd2}}$	b _w (cm)	A _{sw} (cm²/m)	A ₉₀ (cm²/m)	Arranjo
0	1.976	19	0,23	60	9,11	0,30	φ10 c/20 (4R)
1	1.629	17	0,29	40	7,99	0,41	φ10 c/12 (2R)
2	1.256	16	0,48	20	9,61	0,86	φ10 c/12 (2R)
3	958	14	0,38	20	6,07	0,78	φ10 c/20 (2R)
4	658	13	0,27	20	3,04	0,71	φ10 c/25 (2R)
5	391	12	0,18	20	3,04	0,68	φ10 c/25 (2R)

Tabela 5.54: Dimensionamento de armadura de cisalhamento combinada com torção

Fonte: Autor

Seção	V _{fad,máx} (kN)	V _{fad,mín} (kN)	Vc (kN)	∆σ _{sw} (MPa)	A _{sw} (cm²/m)	Arranjo
0	926	600	1.312	74,7	20,92	φ10 c/15 (4R)
1	766	508	874	73,0	20,46	φ12,5 c/12 (2R)
2	583	336	433	70,8	20,46	φ12,5 c/12 (2R)
3	429	184	428	77,6	16,36	φ12,5 c/15 (2R)
4	269	28	424	54,4	6,28	φ10 c/25 (2R)
5	125	-114	424	-	6,28	φ10 c/25 (2R)

Tabela 5.55: Resumo de verificação de fadiga da armadura de cisalhamento

Fonte: Autor

O resumo de verificação de deslocamento estimado na longarina VP2 no ELS-DEF é apresentado na Tabela 5.56. Nota-se que para a longarina isostática em estudo, de comprimento de vão teórico ℓ de 33 m, o deslocamento máximo estimado de 17,7 cm é superior ao deslocamento limite de ℓ /300, no caso, 11,0 cm. O deslocamento excessivo é parcialmente compensado por contraflecha de 8,0 cm. Também pode ser verificado que o deslocamento devido a parcela de totalidade de cargas móveis é de 4,0 cm e que atende ao limite estabelecido de ℓ /500, no caso, 6,6 cm. Para a viga armada em estudo, a abertura

máxima de fissuras na superfície do concreto w_k é de 0,13 mm, deste modo, dentro do limite aceitável de $w_k \le 0,30$ mm.

Ma	Mr	I _{eq}	Deslo	camento e	stimado n	a estrutui	ra (cm)
(kN.m)	(kN.m)	(cm⁴)	ai	a _q	a _f	a cf	a _{cf} + a _f
7.864	2.319	39.619.466	8,3	4,0	17,7	-8,0	9,7

Tabela 5.56: Resumo de verificação de deslocamento estimado na longarina

Fonte: Autor

5.4.3 Dimensionamento de longarina protendida

A posição dos cabos nas seções transversais 0 (seção do apoio) e 5 (seção meio do vão) para a longarina em concreto protendido em estudo são representadas na Figura 5.11. A Tabela 5.57 apresenta as principais características da armadura ativa para as situações de protensão limitada e completa, com uso de aço de CP-190 RB e CP-210 RB. Para efeito de análise são fixadas o diâmetro nominal da cordoalha, o traçado longitudinal dos cabos e a força de protensão inicial P_{ini} de 1.800 kN/cabo para a situação de protensão limitada e de 2.200 kN/cabo para a situação de protensão completa.

400	С	abo	Ap	P _{ini}	Po	P _{inf}	
Aço	Quant.	Arranjo	(cm²/cabo)	(kN/cabo)	(kN/cabo)	(kN/cabo)	
CP-190 RB	4	13 φ12,7	13,13	1.800	1.647	1.260	
CP-210 RB	4	12 φ12,7	12,12	1.800	1.655	1.289	
CP-190 RB	4	16 φ12,7	16,16	2.200	1.995	1.458	
CP-210 RB	4	15 φ12,7	15,15	2.200	2.004	1.495	
	Aço CP-190 RB CP-210 RB CP-190 RB CP-210 RB	Aço C Quant. Quant. CP-190 RB 4 CP-210 RB 4 CP-190 RB 4 CP-210 RB 4	κρο Calmon Λφο Λ CP-190 RB 4 13 φ12,7 CP-210 RB 4 12 φ12,7 CP-190 RB 4 16 φ12,7 CP-210 RB 4 15 φ12,7	Aço Caunt. Arranjo Ap, cm²/cabo. CP-190 RB 4 13 φ12,7 13,13 CP-210 RB 4 12 φ12,7 12,12 CP-190 RB 4 16 φ12,7 16,16 CP-210 RB 4 15 φ12,7 15,15	Aço Caunt. Aranjo Ap, cm²/cabo Ap, cm²/cab Ap, cm²/cabo Ap, c	Aço Caunt Aranjo Ap, cm²/cabo Ap, ch²/cabo Ap, c	

Tabela 5.57: Características da armadura ativa para protensão limitada e completa

As tensões normais na fibra superior σ_2 e inferior σ_1 na seção 5 de concreto para a situação de protensão limitada com uso de aço CP-190 RB e CP-210 RB são apresentadas na Tabela 5.58 e para a situação de protensão completa na Tabela 5.59. A partir da análise da Tabela 5.58 é possível concluir que a situação de protensão limitada foi atendida para os arranjos adotados com uso de aço CP-190 RB e CP-210 RB, pois as tensões normais na seção 5 não excedem as tensões limites, assim como, foi atendida a situação de protensão completa a partir da análise da Tabela 5.59.

400	Tensões	Tensões em vazio e em serviço (MPa)					
AÇU	normais	ΑΤΟ	CQP	CF			
CP-190 RB	σ2	+0,4	-9,1	-9,6			
	σ1	-22,2	-0,1	+1,9			
	σ2	+0,4	-9,0	-9,6			
	σ1	-22,3	-0,4	+1,4			

Tabela 5.58: Tensões normais nas bordas na seção 5 para protensão limitada

	~			~ =		~ ~	• •
1 ahela 5 59.	Iensoes	normals has	hordas	na secao h	nara	nrotensao col	mnieta
	10113003	normais nas	501445		pulu	protonsuo con	inpicia

A a a	Tensões	Tensões em vazio e em serviço (MPa)				
AÇO	normais	ΑΤΟ	CF	CR		
CP-190 RB	σ2	+1,9	-8,3	-9,7		
	σ1	-28,3	-1,5	+3,3		
	σ2	+1,9	-8,3	-9,7		
CP-210 RB	σ1	-28,5	-2,0	+2,7		

Para a viga protendida em estudo, a maior variação de tensão normal no aço de armadura ativa $\Delta \sigma_p$ para a combinação frequente de fadiga é de 23,7 MPa, deste modo, não haverá ruptura por fadiga da armadura ativa.

A Tabela 5.60 apresenta o resumo de verificação de armadura ativa e passiva de flexão no ELU para as situações de protensão limitada e completa. Nota-se que para as situações de protensão limitada o arranjo de armadura de flexão é composto por armadura ativa e armadura passiva (2 \phi16 mm de CA-50). Para as situações de protensão completa o arranjo de armadura de flexão é composto apenas por armadura ativa.

Protensão	Aço	M _{Sd} (kN.m)	d (cm)	x/d	A _p (cm²)	A _s (cm²)	M _{Rd} (kN.m)
Limitodo	CP-190 RB	15.562	202	0,07	52,52	4,02	15.686
Linitada	CP-210 RB	15.562	202	0,07	48,48	4,02	15.987
Complete	CP-190 RB	15.562	202	0,09	64,64	-	18.745
Completa	CP-210 RB	15.562	202	0,09	60,60	-	19.398

Tabela 5.60: Resumo de verificação de armadura ativa e passiva de flexão no ELU

Fonte: Autor

O resumo de dimensionamento de armadura de cisalhamento combinada com torção no ELU é apresentado na Tabela 5.61 para a situação de protensão limitada e na Tabela 5.62 para a situação de protensão completa. Pode ser observado nas Tabelas 5.61 e 5.62 que para a seção de cálculo 2 foi adotado o arranjo de armadura composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 10 mm, espaçados a cada 20 cm para as situações de protensão limitada e completa.

As Tabelas 5.63 e 5.64 apresentam o resumo de verificação de fadiga da armadura de cisalhamento no ELS para as situações de protensão limitada e completa respectivamente. Nota-se na Tabela 5.63 que para a longarina com protensão limitada foi necessário adotar um novo arranjo de armadura para a seção de cálculo 2, este composto por estribos de 2 ramos de aço de CA-50 com diâmetro de 10 mm, espaçados a cada 15 cm. Para a longarina com protensão completa não foi necessário adotar novos arranjos de armadura transversal. Também pode ser verificado nas Tabelas 5.63 e 5.64 que para os arranjos de armadura adotados não haverá ruptura por fadiga da armadura transversal.

Seção	V _{Sd} (kN)	T _{Sd} (kN.m)	$\frac{V_{Sd}}{V_{Rd2}} + \frac{T_{Sd}}{T_{Rd2}}$	b _w (cm)	A ₉₀ (cm²/m)	A ₉₀ (cm²/m)	Arranjo
0	1.500	19	0,22	60	9,11	0,30	φ10 c/20 (4R)
1	1.243	17	0,29	40	6,07	0,41	φ10 c/20 (2R)
2	989	16	0,53	20	5,99	0,86	φ10 c/20 (2R)
3	804	14	0,44	20	3,88	0,78	φ10 c/25 (2R)
4	604	13	0,32	20	3,04	0,71	φ10 c/25 (2R)
5	391	12	0,22	20	3,04	0,68	φ10 c/25 (2R)

Tabela 5.61: Dimensionamento de armadura transversal para protensão limitada

					~ .	
Lanala 5 67 Dimonsionament	0 UD 3	armadura	tranevoreal	nara	nratanesa	completa
	u u u u u u	aimauuia		para	proterisao	completa

Seção	V _{Sd} (kN)	T _{Sd} (kN.m)	$\frac{V_{Sd}}{V_{Rd2}} + \frac{T_{Sd}}{T_{Rd2}}$	b _w (cm)	A _{sw} (cm²/m)	A ₉₀ (cm²/m)	Arranjo
0	1.425	19	0,21	60	9,11	0,30	φ10 c/20 (4R)
1	1.182	17	0,28	40	6,07	0,41	φ10 c/20 (2R)
2	946	16	0,51	20	4,95	0,86	φ10 c/20 (2R)
3	780	14	0,42	20	3,15	0,78	φ10 c/25 (2R)
4	595	13	0,31	20	3,04	0,71	φ10 c/25 (2R)
5	391	12	0,22	20	3,04	0,68	φ10 c/25 (2R)

Fonte: Autor

Tabela 5.63: Verificação de fadiga da armadura transversal para protensão limitada

Seção	V _{fad,máx} (kN)	V _{fad,mín} (kN)	Vc (kN)	∆σ _{sw} (MPa)	A _{sw} (cm²/m)	Arranjo
0	606	257	2.234	-	15,72	φ10 c/20 (4R)
1	503	226	1.381	-	10,46	φ10 c/15 (2R)
2	408	140	550	75,8	10,46	φ10 c/15 (2R)
3	339	75	520	59,5	7,86	φ10 c/20 (2R)
4	251	-7	536	-	6,28	φ10 c/25 (2R)
5	132	-122	531	-	6,28	φ10 c/25 (2R)

Seção	V _{fad,máx} (kN)	V _{fad,mín} (kN)	Vc (kN)	∆σ _{sw} (MPa)	A _{sw} (cm²/m)	Arranjo
0	530	182	2.234	-	15,72	φ10 c/20 (4R)
1	442	165	1.433	-	7,86	φ10 c/20 (2R)
2	366	98	584	56,1	7,86	φ10 c/20 (2R)
3	314	51	549	37,7	6,28	φ10 c/25 (2R)
4	242	-16	565	-	6,28	φ10 c/25 (2R)
5	132	-122	559	-	6,28	φ10 c/25 (2R)

Tabela 5.64: Verificação de fadiga da armadura transversal para protensão completa

O resumo de verificação de deslocamento estimado na longarina VP2 no ELS-DEF é apresentado na Tabela 5.65 para as situações de protensão limitada e completa. Nota-se que para as longarinas pré-moldadas em estudo, de comprimento de vão teórico ℓ de 33 m, foram respeitados os deslocamentos limites na etapa inicial e na etapa final. O momento fletor solicitante máximo em serviço é de 11.026 kN.m. Para a situação de protensão completa o elemento estrutural encontra-se não fissurado, pois M_r > M_{CR}. Entretanto, para a situação de protensão limitada o elemento estrutural encontra-se fissurado, pois M_{CR} > M_r.

Protensão	A co	Mr	Deslocamento estimado na estrutura (cm)				
	Açu	(kN.m)	a _p	ai	a _q	a _f	
	CP-190 RB	9.965	-3,1	1,3	4,0	5,4	
Limitada	CP-210 RB	10.144	-3,1	1,3	4,0	5,7	
Complete	CP-190 RB	11.171	-3,6	0,1	1,9	0,7	
Completa	CP-210 RB	11.393	-3,6	0,1	1,9	0,8	

Tabela 5.65: Resumo de verificação de deslocamento estimado na longarina

6 CUSTOS DE PRODUÇÃO

Esse capítulo apresenta consumos e custos de produção de longarinas em concreto armado com uso de aço comum CA-50 e em concreto protendido com uso de aço CP-190 RB e CP-210 RB. São apresentados os resultados da viga principal armada e protendida para cada tabuleiro de ponte rodoviária em estudo, com dimensões em planta de: 14,10x20,00 m², 14,10x25,00 m², 14,10x30,00 m² e 14,10x35,00 m². Os consumos e custos de produção foram obtidos conforme os critérios apresentados no capítulo 4 e os resultados de dimensionamento apresentados no capítulo 5.

6.1 TABULEIRO 14,10x20,00 m²

A partir do dimensionamento da longarina pré-moldada em concreto armado e em concreto protendido foi realizado o detalhamento da armadura e determinado o consumo de aço para as armaduras de: flexão, cisalhamento e torção, pele, fretagem, reforço de furo de içamento e outras complementares. O detalhamento e consumo de aço das armaduras foi realizado com auxílio do programa comercial CAD/Vigas versão 19.13, desenvolvido pela empresa TQS Informática. A Tabela 6.1 apresenta o resumo de consumo de aço das armaduras supracitadas para cada sistema construtivo considerado.

Sistema construtivo		Consumo de armadura ativa e passiva (kg)					
Protensão	Aço	Flexão ativa	Flexão passiva	Cisalhamento e torção	Demais		
-	CA-50	-	1.423	808	308		
Limitada	CP-190 RB	401	193	594	338		
	CP-210 RB	356	193	594	338		
Complete	CP-190 RB	534	-	498	338		
Completa	CP-210 RB	490	-	498	338		

|--|

Os custos de produção de viga pré-moldada armada com uso de aço comum CA-50 e protendida com uso de aço CP-190 RB e CP-210 RB, com protensão limitada e completa, são apresentados nas Tabelas 6.2 a 6.7.

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	11,02	620,35	6.835,51	17,5%
Forma metálica	m²	71,11	82,66	5.877,72	15,0%
Aço CA-50	kg	2.538,60	10,42	26.452,21	67,5%
Total				39.165,44	100,0%

Tabela 6.2: Custo de produção de longarina pré-moldada armada com uso de CA-50

Fonte: Autor

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	11,02	620,35	6.835,51	16,5%
Forma metálica	m²	71,11	82,66	5.877,72	14,2%
Aço CA-50	kg	1.125,00	10,42	11.722,50	28,2%
Aço CP-190 RB	kg	400,59	25,08	10.046,89	24,2%
Ancoragem ativa	unid.	6,00	1.173,23	7.039,35	17,0%
Total				41.521,97	100,0%

Fonte: Autor

Tabela 6.4: Custo de produção de viga com uso de CP-210 RB (protensão limitada)

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	11,02	620,35	6.835,51	16,9%
Forma metálica	m²	71,11	82,66	5.877,72	14,5%
Aço CA-50	kg	1.125,00	10,42	11.722,50	28,9%
Aço CP-210 RB	kg	356,08	25,35	9.026,71	22,3%
Ancoragem ativa	unid.	6,00	1.173,23	7.039,35	17,4%
Total				40.501,79	100,0%

Fonte: Autor

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	11,02	620,35	6.835,51	15,5%
Forma metálica	m²	71,11	82,66	5.877,72	13,4%
Aço CA-50	kg	836,00	10,42	8.711,12	19,8%
Aço CP-190 RB	kg	534,12	25,08	13.395,85	30,4%
Ancoragem ativa	unid.	6,00	1.532,00	9.192,00	20,9%
Total				44.012,20	100,0%

Tabela 6.5: Custo de produção de viga com uso de CP-190 RB (protensão completa)

Tabela 6.6: Custo de produção de viga com uso de CP-210 RB (protensão completa)

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	11,02	620,35	6.835,51	15,9%
Forma metálica	m²	71,11	82,66	5.877,72	13,7%
Aço CA-50	kg	836,00	10,42	8.711,12	20,2%
Aço CP-210 RB	kg	489,61	25,35	12.411,73	28,8%
Ancoragem ativa	unid.	6,00	1.532,00	9.192,00	21,4%
Total				43.028,07	100,0%

Fonte: Autor

Pode ser observado na Tabela 6.2 que para o tabuleiro em estudo, o custo total de produção para uma viga pré-moldada armada com uso de aço CA-50 é de R\$ 39.165,44. Os custos de produção para viga pré-moldada com protensão limitada são apresentados nas Tabelas 6.3 e 6.4. O custo de produção de longarina com protensão limitada e uso de CP-190 RB é de R\$ 41.521,97 e para a com uso de CP-210 RB é de R\$ 40.501,79. Deste modo, pode ser verificado que a longarina armada é mais econômica que a longarina protendida com uso de CP-190 RB em cerca de 6%. Quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é menor, cerca de 3%.

A partir da análise das Tabelas 6.3 e 6.4 verifica-se que o consumo de aço CP-210 RB é menor que o consumo de aço CP-190 RB, porém o custo unitário do aço CP-210 RB é pouco maior (praticamente igual) que o aço CP-190 RB, resultando no custo final de produção de viga pré-moldada protendida com uso de aço CP-210 inferior a viga pré-moldada protendida com uso de aço CP-190 RB, em torno de 2%. O custo unitário do serviço de ancoragem ativa é o mesmo para uso com aço CP-190 RB e CP-210 RB, pois a força de protensão considerada na saída do aparelho de protensão é a mesma para ambos os casos.

Quando comparada a Tabela 6.2 com as Tabelas 6.5 e 6.6, pode ser observado que o custo final de produção de viga pré-moldada armada é menor que a de viga pré-moldada com protensão completa, em torno de 11% quando comparado com o custo de produção com uso de aço CP-190 RB e em torno de 9% quando comparado com o custo de produção com uso de CP-210 RB. Também pode ser notado nas Tabelas 6.5 e 6.6, para a situação de protensão completa, que o custo de produção de longarina com uso de aço CP-210 é menor que viga longarina com uso de aço CP-190 RB, em torno de 2%.

A Figura 6.1 ilustra os percentuais de custos de cada serviço para a produção de longarina pré-moldada armada com uso de aço convencional CA-50 e protendida com uso aço CP-210 RB para as situações de protensão limitada e completa. A análise da Figura 6.1 indica que a armadura da viga isostática protendida em estudo, composta por armadura ativa, passiva e ancoragem ativa, representa em torno de 70% do custo final do produto e que o custo do serviço de ancoragem ativa, em torno de 20% do total, é superior ao custo dos serviços de concreto e de forma.

Também pode ser observado na Figura 6.1 que para a situação de protensão completa a armadura ativa representa cerca de 30% do custo total e a armadura passiva cerca de 20%. Para a situação de protensão limitada a armadura ativa representa cerca de 20% do custo total e a armadura passiva cerca de 30%. Nota-se que o percentual de custo relativo do serviço de ancoragem ativa é superior para a situação de protensão completa quando comparado com a situação de protensão limitada, devido a maior intensidade da força de protensão na saída do aparelho de protensão.

Figura 6.1: Percentual de custos relativos para produção de viga pré-moldada

Fonte: Autor

6.2 TABULEIRO 14,10x25,00 m²

A Tabela 6.7 apresenta o resumo de consumo de aço de armaduras para cada sistema construtivo considerado. Os custos de produção de viga pré-moldada armada com uso de aço CA-50 e protendida com uso de aço CP-190 RB e CP-210 RB, com protensão limitada e completa, são apresentados nas Tabelas 6.8 a 6.12.

Sistema construtivo		Consumo de armadura ativa e passiva (kg)					
Protensão	Aço	Flexão ativa	Flexão passiva	Cisalhamento e torção	Demais		
-	CA-50	-	2.397	1.156	483		
Limitodo	CP-190 RB	677	194	761	493		
Limitada	CP-210 RB	621	194	761	493		
Complete	CP-190 RB	847	-	623	493		
Completa	CP-210 RB	790	-	623	493		

Tabela 6.7: Resumo de consumo de aço para cada sistema construtivo

Fonte: Autor

Tabela 6.8: Custo de produção de longarina pré-moldada armada com uso de CA-50

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	15,27	620,35	9.475,72	15,9%
Forma metálica	m²	99,40	82,66	8.216,49	13,8%
Aço CA-50	kg	4.036,00	10,42	42.055,12	70,4%
Total				59.747,33	100,0%

Fonte: Autor

Tabela 6.9: Custo de produção de viga com uso de CP-190 RB (protensão limitada)

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	15,27	620,35	9.475,72	16,1%
Forma metálica	m²	99,40	82,66	8.216,49	13,9%
Aço CA-50	kg	1.448,00	10,42	15.088,16	25,6%
Aço CP-190 RB	kg	677,26	25,08	16.985,56	28,8%
Ancoragem ativa	unid.	6,00	1.532,00	9.192,00	15,6%
Total				58.957,93	100,0%

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	15,27	620,35	9.475,72	16,4%
Forma metálica	m²	99,40	82,66	8.216,49	14,2%
Aço CA-50	kg	1.448,00	10,42	15.088,16	26,1%
Aço CP-210 RB	kg	620,82	25,35	15.737,71	27,3%
Ancoragem ativa	unid.	6,00	1.532,00	9.192,00	15,9%
Total				57.710,09	100,0%

Tabela 6.10: Custo de produção de viga com uso de CP-210 RB (protensão limitada)

Tabela 6.11: Custo de produção de viga com uso de CP-190 RB (protensão completa)

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	15,27	620,35	9.475,72	15,1%
Forma metálica	m²	99,40	82,66	8.216,49	13,1%
Aço CA-50	kg	1.116,00	10,42	11.628,72	18,6%
Aço CP-190 RB	kg	846,57	25,08	21.231,95	33,9%
Ancoragem ativa	unid.	6,00	2.018,51	12.111,06	19,3%
Total				62.663,94	100,0%

Fonte: Autor

Tabela 6.12: Custo de produção de viga com uso de CP-210 RB (protensão completa)

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	15,27	620,35	9.475,72	15,4%
Forma metálica	m²	99,40	82,66	8.216,49	13,4%
Aço CA-50	kg	1.116,00	10,42	11.628,72	18,9%
Aço CP-210 RB	kg	790,13	25,35	20.029,82	32,6%
Ancoragem ativa	unid.	6,00	2.018,51	12.111,06	19,7%
Total				61.461,81	100,0%

Pode ser observado na Tabela 6.8 que para o tabuleiro em estudo, o custo total de produção para uma viga pré-moldada armada com uso de aço CA-50 é de R\$ 59.747,33. Os custos de produção para viga pré-moldada com protensão limitada são apresentados nas Tabelas 6.9 e 6.10. O custo de produção de longarina com protensão limitada e uso de CP-190 RB é de R\$ 58.957,93 e para a com uso de CP-210 RB é de R\$ 57.710,09. Deste modo, pode ser verificado que as longarinas protendidas com protensão limitada são mais econômicas que a longarina armada. Quando comparada a longarina armada com a longarina protendida com uso de CP-190 RB a diferença de custo é de cerca de 1% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é de cerca de 1% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é de cerca de 1% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é de cerca de 1% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a

Verifica-se nas Tabelas 6.11 e 6.12 que o custo de produção de longarina com protensão completa e uso de CP-190 RB é de R\$ 62.663,94 e para a com uso de CP-210 RB é de R\$ 61.461,81. Quando comparada a Tabela 6.8 com as Tabelas 6.11 e 6.12, pode ser observado que o custo final de produção de viga pré-moldada armada é menor que a de viga pré-moldada com protensão completa, em torno de 5% quando comparado com o custo de produção com uso de aço CP-190 RB e em torno de 3% quando comparado com o custo de produção com uso de CP-210 RB.

6.3 TABULEIRO 14,10x30,00 m²

A Tabela 6.13 apresenta o resumo de consumo de aço de armadura de flexão ativa e passiva, de cisalhamento e torção e demais (pele, fretagem, reforço de furo de içamento e outras complementares) para cada sistema construtivo considerado. Os custos de produção de viga pré-moldada armada com uso de aço CA-50 e protendida com uso de aço CP-190 RB e CP-210 RB, com protensão limitada e completa, são apresentados nas Tabelas 6.14 a 6.18.

Sistema construtivo		Consumo de armadura ativa e passiva (kg)					
Protensão	Aço	Flexão ativa	Flexão passiva	Cisalhamento e torção	Demais		
-	CA-50	-	3.782	1.447	681		
(Limitada (CP-190 RB	912	260	898	650		
	CP-210 RB	820	260	898	650		
CP-190 RB Completa CP-210 RB	1.094	-	739	650			
	CP-210 RB	1.003	-	739	650		

Tabela 6.13: Resumo de consumo de aço para cada sistema construtivo

Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
m³	21,82	620,35	13.535,29	15,6%
m²	143,37	82,66	11.851,37	13,6%
kg	5.910,30	10,42	61.585,33	70,8%
			86.971,99	100,0%
	Unid. m³ m² kg	Unid. Quant. m³ 21,82 m² 143,37 kg 5.910,30	Unid. Quant. Custo unit. (R\$/unid.) m³ 21,82 620,35 m² 143,37 82,66 kg 5.910,30 10,42	Unid.Quant.Custo unit. (R\$/unid.)Custo total (R\$)m³21,82620,3513.535,29m²143,3782,6611.851,37kg5.910,3010,4261.585,3386.971,99

Tabela 6.14: Custo de produção de longarina pré-moldada armada com uso de CA-50

Tabela 6.15: Custo de produção de viga com uso de CP-190 RB (protensão limitada)

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	21,82	620,35	13.535,29	17,7%
Forma metálica	m²	143,37	82,66	11.851,37	15,5%
Aço CA-50	kg	1.808,00	10,42	18.839,36	24,6%
Aço CP-190 RB	kg	911,51	25,08	22.860,74	29,9%
Ancoragem ativa	unid.	8,00	1.173,23	9.385,80	12,3%
Total				76.472,57	100,0%

Fonte: Autor

Tabela 6.16: Custo de produção de viga com uso de CP-210 RB (protensão limitada)

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	21,82	620,35	13.535,29	18,2%
Forma metálica	m²	143,37	82,66	11.851,37	15,9%
Aço CA-50	kg	1.808,00	10,42	18.839,36	25,3%
Aço CP-210 RB	kg	820,36	25,35	20.796,16	27,9%
Ancoragem ativa	unid.	8,00	1.173,23	9.385,80	12,6%
Total				74.407,99	100,0%

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	21,82	620,35	13.535,29	17,0%
Forma metálica	m²	143,37	82,66	11.851,37	14,9%
Aço CA-50	kg	1.389,00	10,42	14.473,38	18,2%
Aço CP-190 RB	kg	1.093,82	25,08	27.432,89	34,5%
Ancoragem ativa	unid.	8,00	1.532,00	12.256,00	15,4%
Total				79.548,93	100,0%

Tabela 6.17: Custo de produção de viga com uso de CP-190 RB (protensão completa)

Tabela 6.18: Custo de produção de viga com uso de CP-210 RB (protensão completa)

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	21,82	620,35	13.535,29	17,5%
Forma metálica	m²	143,37	82,66	11.851,37	15,3%
Aço CA-50	kg	1.389,00	10,42	14.473,38	18,7%
Aço CP-210 RB	kg	1.002,66	25,35	25.417,53	32,8%
Ancoragem ativa	unid.	8,00	1.532,00	12.256,00	15,8%
Total				77.533,58	100,0%

Fonte: Autor

Pode ser observado na Tabela 6.14 que para o tabuleiro em estudo, o custo total de produção para uma viga pré-moldada armada com uso de aço CA-50 é de R\$ 86.971,99. Os custos de produção para viga pré-moldada com protensão limitada são apresentados nas Tabelas 6.15 e 6.16. O custo de produção de longarina com protensão limitada e uso de CP-190 RB é de R\$ 76.472,57 e para a com uso de CP-210 RB é de R\$ 74.407,99. Deste modo, pode ser verificado que as longarinas protendidas com protensão limitada são mais econômicas que a longarina armada. Quando comparada a longarina armada com a longarina protendida com uso de CP-190 RB a diferença de custo é de cerca de 12% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é de cerca de 12% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é de cerca de 12% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é de cerca de 12% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é de cerca de 12% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é maior, em cerca de 14%.

Verifica-se nas Tabelas 6.17 e 6.18 que o custo de produção de longarina com protensão completa e uso de CP-190 RB é de R\$ 79.854,93 e para a com uso de CP-210 RB
é de R\$ 77.533,58. Quando comparada a Tabela 6.14 com as Tabelas 6.17 e 6.18, pode ser observado que o custo final de produção de viga pré-moldada com protensão completa é menor que a de viga pré-moldada armada, em torno de 9% quando comparado com o custo de produção com uso de aço CP-190 RB e em torno de 11% quando comparado com o custo de produção com uso de CP-210 RB.

6.4 TABULEIRO 14,10x35,00 m²

A Tabela 6.19 apresenta o resumo de consumo de aço de armadura de flexão ativa e passiva, de cisalhamento e torção e demais (pele, fretagem, reforço de furo de içamento e outras complementares) para cada sistema construtivo considerado. Os custos de produção de viga pré-moldada armada com uso de aço CA-50 e protendida com uso de aço CP-190 RB e CP-210 RB, com protensão limitada e completa, são apresentados nas Tabelas 6.20 a 6.24.

Sistema c	onstrutivo	Consu	Consumo de armadura ativa e passiva (kg)					
Protensão	Aço	Flexão ativa	Flexão passiva	Cisalhamento e torção	Demais			
-	CA-50	-	5.313	1.841	964			
Linsitede	CP-190 RB	1.391	228	1.056	859			
Limitada	CP-210 RB	1.284	228	1.056	859			
Complete	CP-190 RB	1.712	-	821	859			
Completa	CP-210 RB	1.605	-	821	859			

 Tabela 6.19: Resumo de consumo de aço para cada sistema construtivo

Fonte: Autor

Tabela 6.20: Custo de produção de longarina pré-moldada armada com uso de CA-50

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	27,47	620,35	17.043,99	14,6%
Forma metálica	m²	181,67	82,66	15.016,75	12,9%
Aço CA-50	kg	8.118,55	10,42	84.595,29	72,5%
Total				116.656,03	100,0%

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	27,47	620,35	17.043,99	16,8%
Forma metálica	m²	181,67	82,66	15.016,75	14,8%
Aço CA-50	kg	2.142,70	10,42	22.326,93	22,0%
Aço CP-190 RB	kg	1.391,20	25,08	34.891,18	34,4%
Ancoragem ativa	unid.	8,00	1.532,00	12.256,00	12,1%
Total				101.534,86	100,0%

Tabela 6.21: Custo de produção de viga com uso de CP-190 RB (protensão limitada)

Fonte: Autor

Tabela 6.22: Custo de produção de viga com uso de CP-210 RB (protensão limitada)

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	27,47	620,35	17.043,99	17,2%
Forma metálica	m²	181,67	82,66	15.016,75	15,1%
Aço CA-50	kg	2.142,70	10,42	22.326,93	22,5%
Aço CP-210 RB	kg	1.284,18	25,35	32.553,98	32,8%
Ancoragem ativa	unid.	8,00	1.532,00	12.256,00	12,4%
Total				99.197,65	100,0%

Fonte: Autor

Tabela 6.23: Custo de produção de viga com uso de CP-190 RB (protensão completa)

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	27,47	620,35	17.043,99	15,7%
Forma metálica	m²	181,67	82,66	15.016,75	13,8%
Aço CA-50	kg	1.679,50	10,42	17.500,39	16,1%
Aço CP-190 RB	kg	1.712,24	25,08	42.943,00	39,5%
Ancoragem ativa	unid.	8,00	2.018,51	16.148,08	14,9%
Total				108.652,20	100,0%

Descrição do item	Unid.	Quant.	Custo unit. (R\$/unid.)	Custo total (R\$)	Percentual
Concreto C45	m³	27,47	620,35	17.043,99	16,0%
Forma metálica	m²	181,67	82,66	15.016,75	14,1%
Aço CA-50	kg	1.679,50	10,42	17.500,39	16,4%
Aço CP-210 RB	kg	1.605,23	25,35	40.692,47	38,2%
Ancoragem ativa	unid.	8,00	2.018,51	16.148,08	15,2%
Total				106.401,68	100,0%

Tabela 6.24: Custo de produção de viga com uso de CP-210 RB (protensão completa)

Fonte: Autor

Pode ser observado na Tabela 6.20 que para o tabuleiro em estudo, o custo total de produção para uma viga pré-moldada armada com uso de aço CA-50 é de R\$ 116.656,03. Os custos de produção para viga pré-moldada com protensão limitada são apresentados nas Tabelas 6.21 e 6.22. O custo de produção de longarina com protensão limitada e uso de CP-190 RB é de R\$ 101.534,86 e para a com uso de CP-210 RB é de R\$ 99.197,65. Deste modo, pode ser verificado que as longarinas protendidas com protensão limitada são mais econômicas que a longarina armada. Quando comparada a longarina armada com a longarina protendida com uso de CP-190 RB a diferença de custo é de cerca de 15% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é de cerca de 15% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é de cerca de 15% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é de cerca de 15% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a diferença de custo é de cerca de 15% e quando comparada a longarina armada com a longarina protendida com uso de CP-210 RB a

Verifica-se nas Tabelas 6.23 e 6.24 que o custo de produção de longarina com protensão completa e uso de CP-190 RB é de R\$ 108.652,20 e para a com uso de CP-210 RB é de R\$ 106.401,68. Quando comparada a Tabela 6.20 com as Tabelas 6.23 e 6.24, pode ser observado que o custo final de produção de viga pré-moldada com protensão completa é menor que a de viga pré-moldada armada, em torno de 7% quando comparado com o custo de produção com uso de aço CP-190 RB e em torno de 10% quando comparado com o custo de produção com uso de CP-210 RB.

7 DISCUSSÃO DE RESULTADOS

Nesse capítulo são apresentadas as discussões dos resultados obtidos de dimensionamento e de custos de produção de longarinas em concreto armado com uso de aço comum CA-50 e em concreto protendido com uso de aço CP-190 RB e CP-210 RB. São apresentados os comparativos dos resultados da longarina armada e protendida para cada tabuleiro de ponte rodoviária em estudo, com dimensões em planta de: 14,10x20,00 m², 14,10x25,00 m², 14,10x30,00 m² e 14,10x35,00 m². Os comparativos foram realizados conforme os resultados de dimensionamento apresentados no capítulo 5 e os resultados de custos de produção apresentados no capítulo 6.

7.1 COMPARATIVOS DE DIMENSIONAMENTO

A Tabela 7.1 resume o comparativo de resultados de dimensionamento de armadura passiva e ativa de flexão no ELU para cada sistema construtivo considerado e para cada tabuleiro de ponte rodoviária em estudo. Pode ser observado que para as situações de viga armada e viga protendida com protensão limitada o ELU condiciona o resultado de dimensionamento da armadura de flexão e que o momento fletor resistente de cálculo M_{Rd} resultou no máximo em 3% superior ao momento fletor solicitante de cálculo M_{Sd} . Nota-se que para as situações de protensão completa o ELS condiciona o resultado de dimensionamento da armadura de flexão e que 10% a 25% superior ao M_{Sd} .

As longarinas com protensão completa apresentam melhor desempenho estrutural no ELS de que as vigas com protensão limitada e de que as vigas armadas, devido a eliminação de fissuras. Sendo assim, o elemento estrutural apresenta maior durabilidade, diminuição ou praticamente eliminação da fadiga da armadura e da flecha diferida na longarina ao longo do tempo.

Também pode ser verificado na Tabela 7.1 que quando comparado os arranjos de cabos de protensão para a mesma intensidade de protensão, foi possível reduzir uma cordoalha de aço com diâmetro de 12,7 mm em cada cabo de protensão para as vigas protendidas com uso de aço CP-210 RB, em relação as com uso de aço CP-190 RB.

Tabulaina	Sistema construtivo		M _{Rd}	M _{Sd}	Arranjo de armadura		
Tabuleiro	Protensão	Aço	(kN.m)	M _{Rd}	Passiva	Ativa	
	-	CA-50	5.434	1,00	21 φ25	-	
	L insite de	CP-190 RB	5.609	1,03	7 φ 16	3х 9 ф12,7	
14,10x20,00 m²	Limitada	CP-210 RB	5.527	1,02	7 φ 16	3х 8 ф12,7	
	Complete	CP-190 RB	6.384	1,17	-	3x 12 ф12,7	
	Completa	CP-210 RB	6.465	1,19	-	3x 11 ф12,7	
	-	CA-50	8.234	1,02	27 φ25	-	
	Limitada	CP-190 RB	8.230	1,02	6 φ16	3x 12 ф12,7	
14,10x25,00 m²		CP-210 RB	8.325	1,03	6 φ16	3x 11 ф12,7	
	Completa	CP-190 RB	9.265	1,14	-	3x 15 ф12,7	
		CP-210 RB	9.547	1,18	-	3x 14 ф12,7	
	-	CA-50	11.995	1,03	31 φ25	-	
	Limitada	CP-190 RB	11.802	1,01	7 φ 16	4x 10 φ12,7	
14,10x30,00 m²		CP-210 RB	11.748	1,01	7 φ 16	4x 9 φ12,7	
		CP-190 RB	12.743	1,10	-	4x 12 φ12,7	
	Completa	CP-210 RB	12.905	1,11	-	4x 11 φ12,7	
	-	CA-50	15.994	1,03	38 φ25	-	
	Limitodo	CP-190 RB	15.686	1,01	2 φ16	4x 13 φ12,7	
14,10x35,00 m²	Limitada	CP-210 RB	15.987	1,03	2 φ16	4x 12 φ12,7	
	Complete	CP-190 RB	18.745	1,20	-	4x 16 φ12,7	
	Completa	CP-210 RB	19.398	1,25	-	4x 15 φ12,7	

Tabela 7.1: Resumo comparativo de dimensionamento de armadura de flexão no ELU

Fonte: Autor

A Tabela 7.2 resume o comparativo de resultados de verificação de deslocamento estimado na estrutura no ELS-DEF para cada sistema construtivo considerado e para cada tabuleiro de ponte rodoviária em estudo. De modo a garantir o desempenho do elemento estrutural no ELS-DEF e proporcionar o uso adequado da estrutura em Obras de Arte Especiais (OAE), em conformidade com instrução de projeto IP-DE-C00-001_A do DER-SP (2005) deve ser respeitado o deslocamento limite de *l*/300, avaliado para a combinação quase permanente de serviço. Para os tabuleiros de ponte rodoviária em estudo, de comprimento nominal 20, 25, 30 e 35 m, os deslocamentos limites resultam em: 6,0 cm; 7,7 cm; 9,3 cm; e

11,0 cm. A partir da análise da Tabela 7.2 pode ser observado que para todos os casos em estudo é respeitado o deslocamento limite de *l*/300.

Tabulaira	Sistema construtivo		Mr	M _r	Deslocamento estimado (cm)			
Tabuleiro	Protensão	Aço	(kN.m)	M _{CR}	a _{cf}	a _p	a _{cf} + a _f	
	-	CA-50	1.100	0,29	-3,0	-	3,3	
	Limitodo	CP-190 RB	3.393	0,89	-	-1,0	3,3	
14,10x20,00 m ²	Liinitaua	CP-210 RB	3.461	0,91	-	-1,0	3,4	
	Complete	CP-190 RB	4.229	1,11	-	-1,4	0,1	
	Completa	CP-210 RB	4.344	1,14	-	-1,4	0,1	
	-	CA-50	1.374	0,24	-5,0	-	6,4	
	Limitada	CP-190 RB	5.194	0,91	-	-1,9	4,4	
14,10x25,00 m ²		CP-210 RB	5.290	0,93	-	-1,9	4,6	
	Completa	CP-190 RB	5.885	1,03	-	-2,2	0,7	
		CP-210 RB	5.978	1,05	-	-2,2	0,7	
	-	CA-50	1.984	0,24	-5,0	-	7,4	
	Limitada	CP-190 RB	7.506	0,91	-	-2,0	5,0	
14,10x30,00 m ²		CP-210 RB	7.615	0,93	-	-2,0	5,1	
	Complete	CP-190 RB	8.397	1,02	-	-2,4	1,2	
	Completa	CP-210 RB	8.563	1,04	-	-2,4	1,2	
	-	CA-50	2.319	0,21	-8,0	-	9,7	
	Limitada	CP-190 RB	9.965	0,90	-	-3,1	5,4	
14,10x35,00 m²	Liiniaua	CP-210 RB	10.144	0,92	-	-3,1	5,7	
	Complete	CP-190 RB	11.171	1,01	-	-3,6	0,7	
	Completa	CP-210 RB	11.393	1,03	-	-3,7	0,8	

Tabela 7.2: Resumo comparativo de verificação de deslocamento na longarina no ELS

Fonte: Autor

Pode ser observado na Tabela 7.2 que para o tabuleiro de 14,10x25,00 m², com o uso da protensão limitada foi possível reduzir em cerca de 30% do deslocamento obtido para a longarina armada com uso de aço comum CA-50. Para a situação de protensão completa, o deslocamento estimado é de 0,7 cm, resultando em redução de cerca de 80% do deslocamento obtido para a longarina armada.

Nota-se na Tabela 7.2 que quando comparado os resultados dos deslocamentos obtidos para a longarina protendida e para a longarina armada, para o tabuleiro de 14,10x35,00 m², o deslocamento da longarina com a protensão limitada resulta em cerca de 50% do deslocamento da longarina armada e o deslocamento da longarina com protensão completa resulta em cerca de 10% do deslocamento da longarina armada. O deslocamento estimado para a longarina armada é de 9,7 cm e o deslocamento para a longarina com protensão completa é menor que 1 cm.

Conforme já observado por França, Ishitani e Graziano (2004), quando comparando vigas em concreto protendido (CP) e em concreto armado (CA) de mesma capacidade resistente M_{Rd}, para uma mesma intensidade de carregamento aplicado, a viga em CP pode não fissurar e apresentar deslocamento menor que a viga em CA, em razão do elemento estrutural em CP apresentar momento de fissuração M_r superior ao elemento em CA. A Figura 7.1 ilustra as diferenças no comportamento em viga protendida e armada.

Fonte: Adaptado de França, Ishitani e Graziano (2004)

7.2 COMPARATIVOS DE PERCENTUAIS DE PRODUÇÃO

As Figuras 7.2 a 7.4 ilustram os percentuais de custos relativos de cada serviço para a produção de longarina pré-moldada armada com uso de CA-50, protendida com uso de CP-210 RB para situação de protensão limitada e protendida com uso de CP-210 RB para situação de protensão completa. Os percentuais relativos de custos de produção são apresentados para cada sistema construtivo considerado e para cada tabuleiro de ponte em estudo: 14,10x20,00 m², 14,10x25,00 m², 14,10x30,00 m², 14,10x35,00 m².

Figura 7.2: Percentual de custos relativos para produção de viga armada

A partir da análise da Figura 7.2 pode ser observado que o custo do serviço de concreto representa em média 16% do custo total de produção, o custo de forma em média 14% e o de aço CA-50 em torno de 70%. Nota-se também que o custo relativo dos serviços de concreto e de forma diminuem em função do aumento do comprimento nominal do tabuleiro. Entretanto o custo do serviço de armadura de aço CA-50 aumenta em função do aumento do comprimento nominal do tabuleiro.

Figura 7.3: Percentual de custos para produção de viga com protensão limitada

A partir da análise da Figura 7.3 pode ser observado que o custo do serviço de concreto representa em média 17% do custo total de produção e o custo de forma em média 15%. Também pode ser notado que o custo relativo do serviço de armadura passiva e

ancoragem ativa diminui com o aumento do comprimento nominal do tabuleiro, variando entre 23% a 29% para a armadura passiva e variando entre 12% a 17% para a ancoragem ativa. Entretanto o custo relativo do serviço de armadura ativa aumenta com o aumento do comprimento nominal do tabuleiro, variando entre 22% a 33% do custo total de produção.

7.3 COMPARATIVOS DE CUSTOS DE PRODUÇÃO

A Tabela 7.3 resume o comparativo de índices quantitativos e de custos de produção de longarina pré-moldada para cada sistema construtivo considerado e para cada tabuleiro de ponte rodoviária em estudo neste trabalho. Os custos de produção de longarina pré-moldada são apresentados em: custo total por unidade de viga, custo total por volume de concreto de viga e custo total das cinco vigas do tabuleiro por área de tabuleiro. A espessura média é determinada pela divisão do volume total das cinco longarinas que compõem o tabuleiro pela área em planta do próprio tabuleiro em estudo.

	Sistema construtivo		Custo de prod	Espessura		
Tabuleiro	Protensão	Aço	Unitário (R\$/unid.)	Total (R\$/m³)	Total (R\$/m²)	média (m³/m²)
	-	CA-50	39.165,44	3.554,42	694,42	
	Limitodo	CP-190 RB	41.521,97	3.768,28	736,21	
14,10x20,00 m²	Liiiilaua	CP-210 RB	40.501,79	3.675,70	718,12	0,20
	Complete	CP-190 RB	44.012,20	3.994,28	780,36	
	Completa	CP-210 RB	43.028,07	3.904,97	762,91	
	-	CA-50	59.747,33	3.911,50	847,48	
	Limitada	CP-190 RB	58.957,93	3.859,82	836,28	
14,10x25,00 m ²		CP-210 RB	57.710,09	3.778,12	818,58	0,22
	Completa	CP-190 RB	62.663,94	4.102,44	888,85	
		CP-210 RB	61.461,81	4.023,74	871,80	
	-	CA-50	86.971,99	3.986,10	1.028,04	
	Limitada	CP-190 RB	76.472,57	3.504,89	903,93	
14,10x30,00 m²		CP-210 RB	74.407,99	3.410,27	879,53	0,26
	Completa	CP-190 RB	79.548,93	3.645,89	940,29	
	Completa	CP-210 RB	77.533,58	3.553,52	916,47	
	-	CA-50	116.656,03	4.245,93	1.181,93	
	Limitada	CP-190 RB	101.534,86	3.695,56	1.028,72	
14,10x35,00 m²	Linitada	CP-210 RB	99.197,65	3.610,50	1.005,04	0,28
	Completa	CP-190 RB	108.652,20	3.954,61	1.100,83	
	Completa	CP-210 RB	106.401,68	3.872,70	1.078,03	

Tabela 7.3: Resumo comparativo de custo de produção de longarina pré-moldada

Fonte: Autor

A partir dos custos de produção por área de tabuleiro apresentados na Tabela 7.3, são determinadas linhas de tendência para cada sistema construtivo em estudo, a fim de determinar o ponto ótimo de utilização de cada sistema construtivo em função do comprimento nominal do tabuleiro considerado neste trabalho. As Figuras 7.5 a 7.8 ilustram as retas de tendência de custos de produção das longarinas pré-moldadas analisadas neste trabalho, para a solução em concreto armado com uso de aço convencional CA-50 e em concreto protendido com uso de aço CP-190 RB e CP-210 RB, para as situações de protensão limitada e completa.

Figura 7.5: Custo de produção de viga armada e protendida (protensão limitada)

Figura 7.6: Custo de produção de viga armada e protendida (protensão completa)

Fonte: Autor

Figura 7.7: Custo de produção de viga com protensão limitada e completa (CP-210 RB)

Fonte: Autor

1.200 1.100 Custo de longarinas (R\$/m2) 1.000 900 800 700 600 20 25 30 35 Comprimento de tabuleiro (m) CA-50 Limitada CP-190 RB 0 ٥ Limitada CP-210 RB Completa CP-190 RB ۸ 0 Completa CP-210 RB — · - Linear (CA-50) Δ Linear (Limitada CP-190 RB) – – – Linear (Limitada CP-210 RB) Linear (Completa CP-190 RB) - - - Linear (Completa CP-210 RB)

Figura 7.8: Custo de produção de viga pré-moldada isostática

Fonte: Autor

As Figuras 7.5 e 7.6 apresentam as equações das retas de tendência obtidas por regressão linear para os modelos analisados neste trabalho. O custo de produção de longarina pré-moldada armada em função do comprimento nominal do tabuleiro pode ser obtido através da Equação (7.1). O custo de produção de longarina protendida com protensão limitada e uso de aço CP-190 RB é expresso pela Equação (7.2) e para a com uso de aço CP-210 RB expresso pela Equação (7.3). Para a situação de protensão completa, o custo de produção de longarina protendida com uso de aço CP-190 RB pode ser obtido por meio da Equação (7.4) e para a com uso de aço CP-210 RB por meio da Equação (7.5).

$$y = 32,861x + 34,28$$
 (7.1)

$$y = 18,904x + 356,43$$
 (7.2)

$$y = 18,434x + 348,37$$
 (7.3)

$$y = 20,257x + 370,51 \tag{7.4}$$

$$y = 19,801x + 362,78 \tag{7.5}$$

Onde:

y é o custo de produção de longarinas pré-moldada por área de tabuleiro, em R\$/m²; x é o comprimento nominal do tabuleiro, em metros.

A partir da análise das Equações (7.2) e (7.3), protensão limitada com uso de CP-190 RB e CP-210 RB respectivamente, verifica-se que a inclinação das retas ascendentes são praticamente iguais, no caso 18,904 e 18,434. Com as Equações (7.4) e (7.5), protensão completa com uso de CP-190 RB e CP-210 RB respectivamente, verifica-se que a inclinação das retas ascendentes são também praticamente iguais, no caso 20,257 e 19,801. Deste modo, pode ser notado que as equações de retas de ajuste linear supracitadas são paralelas, com variação apenas no intercepto.

Também pode ser observado nas Figuras 7.5 e 7.6 que os coeficientes de correlação R² são superiores a 95%, resultando em baixo número de resíduos e alta significância da variável do comprimento nominal do tabuleiro no custo total de produção de longarina prémoldada. Os coeficientes R² apresentados também indicam que os pontos de dispersão estão próximos as retas de ajuste linear, deste modo, verifica-se que o modelo de reta apresentado está adequado para os pontos de dispersão. Após analisar consumos e custos de execução de tabuleiros de pontes e viadutos rodoviários reais em escritório de projetos, Pastore (2011) observou que a utilização de viga isostática protendida com protensão limitada e uso de aço CP-190 RB é mais econômica que a viga armada para tabuleiros com comprimentos maiores que 27 m. Os tabuleiros analisados por Pastore (2011) apresentam largura variável entre 8,80 e 15,30 m. As vigas armadas analisadas apresentam comprimento de vão efetivo *l* entre 20 a 24 m e as vigas protendida *l* de 20 a 43 m.

A análise dos custos de produção apresentados na Figura 7.5, indicam que os tabuleiros de pontes ou viadutos rodoviários analisados neste trabalho com comprimentos nominais de até 22 m é mais econômico utilizar longarinas pré-moldadas em concreto armado com uso de aço convencional CA-50. Para tabuleiros com comprimentos maiores que 22 m é mais econômico utilizar longarinas pré-moldadas protendidas com protensão limitada e uso de aço CP-210 RB. Deste modo, com o uso do aço CP-210 RB é amplificado o campo de aplicação de longarina protendida com protensão limitada em relação ao estudo apresentado por Pastore (2011).

Para a situação de vigas com protensão completa, pode ser verificado na Figura 7.6 que para tabuleiros com comprimentos nominais maiores que 25 m é mais econômico utilizar longarinas protendidas com protensão completa e uso de aço CP-210 RB que longarinas em concreto armado com uso de aço CA-50.

Nota-se na Figura 7.7 que para os tabuleiros de ponte rodoviária em estudo, o custo de produção de longarina pré-moldada com protensão limitada é sempre inferior ao custo de produção de longarina com protensão completa, pois pode ser observado que as retas de ajuste linear de dados são praticamente paralelas. Entretanto, pode ser observado que a variação média de custo de produção de longarina isostática com o sistema de protensão limitada em comparação com a longarina com protensão completa é menor que 6%.

7.4 EQUAÇÕES GERAIS DE CUSTO DE PRODUÇÃO

Os custos unitários dos itens para produção de longarina podem variar com o passar do tempo e em razão da alteração do local de produção, deste modo, são apresentadas equações gerais para os modelos analisados neste trabalho a fim de determinar o custo de produção de longarina pré-moldada em função do comprimento nominal do tabuleiro e em função dos custos unitários dos itens de produção: concreto, forma metálica, aço CA-50, aço CP-190 RB, aço CP-210 RB e ancoragem ativa. As equações foram obtidas por meio de regressão linear de consumos em função do comprimento nominal do tabuleiro.

O custo total de produção de longarina pré-moldada armada pode ser obtido por meio da Equação (7.6). O custo de produção de longarina protendida com protensão limitada e uso de aço CP-190 RB é obtido pela Equação (7.7) e com uso de aço CP-210 RB pela Equação (7.8). Para a situação de protensão completa, o custo de produção de longarina protendida com uso de aço CP-190 RB pode ser obtido através da Equação (7.9) e com uso de aço CP-210 RB 200 CP-210 RB pode ser obtido através da Equação (7.9) e com uso de aço CP-210 RB 200 RB 200 CP-210 RB 200 RB 200

$$CTP = CU_{c}(1,12x - 11,85) + CU_{f}(7,51x - 82,72) + CU_{ca}(372x - 5086)$$
(7.6)

$$CTP = \begin{bmatrix} CU_{c}(1,12x-11,85) + CU_{f}(7,51x-82,72) + \\ CU_{ca}(68x-246) + CU_{cp}(64x-918) + CU_{aa}(2,5x+4,2) \end{bmatrix}$$
(7.7)

$$CTP = \begin{bmatrix} CU_{c}(1,12x-11,85) + CU_{f}(7,51x-82,72) + \\ CU_{ca}(68x-246) + CU_{cp}(60x-871) + CU_{aa}(2,5x+4,2) \end{bmatrix}$$
(7.8)

$$CTP = \begin{bmatrix} CU_{c}(1,12x-11,85) + CU_{f}(7,51x-82,72) + \\ CU_{ca}(56x-287) + CU_{cp}(76x-1033) + CU_{aa}(3x+12) \end{bmatrix}$$
(7.9)

$$CTP = \begin{bmatrix} CU_{c}(1,12x-11,85) + CU_{f}(7,51x-82,72) + \\ CU_{ca}(56x-287) + CU_{cp}(71x-986) + CU_{aa}(3x+12) \end{bmatrix}$$
(7.10)

Onde:

x é o comprimento nominal do tabuleiro, em metros;

CTP é o custo total de produção de longarina pré-moldada, em R\$;

CU_c é o custo unitário do item de produção concreto classe C45, em R\$/m3;

CU_f é o custo unitário do item de produção forma metálica, em R\$/m²;

CU_{ca} é o custo unitário do item de produção de aço CA-50, em R\$/kg;

CU_{cp} é o custo unitário do item de produção de aço CP-190 ou CP-210, em R\$/kg;

CU_{aa} é o custo unitário do item de produção de ancoragem ativa, em R\$/cordoalha.

Para as Equações (7.7) a (7.10), o consumo de ancoragem ativa foi determinado em função do número de ancoragem ativa por cordoalha. Por exemplo para a longarina protendida com protensão completa e uso de CP-190 RB, do tabuleiro 14,10x20,00 m², o arranjo de armadura ativa é composto por 3 cabos de 12 ϕ 12,7 mm, ancorados em ambas as extremidades da viga pré-moldada, resultando na ancoragem de 72 cordoalhas de aço com

diâmetro de 12,7 mm. O consumo de ancoragem ativa pode ser determinado através da última parcela da Equação (7.9), 3x + 12, resultando em 72 ancoragens ativas.

De modo análogo, o custo unitário de ancoragem ativa CU_{aa} deve ser determinado em função do número de cordoalhas ancoradas em cada extremidade da longarina. A partir dos custos unitários de ancoragem ativa apresentados na Tabela 4.3 foi possível determinar o custo unitário médio por cordoalha, resultando em 133,74 R\$/cordoalha.

8 CONCLUSÕES

Este trabalho apresentou algumas das diferenças do processo de produção e características dos aços de protensão CP-190 RB, tradicionalmente utilizado, e o novo aço brasileiro de protensão CP-210 RB. A diferença básica entre o processo de fabricação de aços menos resistentes e o CP-210 consiste no número de passes na trefilação, possibilitada por sua pureza na composição química. A produção brasileira do aço CP-210 RB iniciou em meados de 2010, com início de vendas sob encomenda para o mercado nacional em 2013 e disponibilização do produto em estoque a partir de 2016.

Desde 2006 estudos são realizados nos Estados Unidos, principalmente no estado de Virginia, com o intuito de investigar o desempenho de cordoalhas de aço *Grade 300* (CP-210) para aplicação em concreto protendido. O resultado destes estudos possibilitou a construção em 2008 de uma ponte localizada no Condado de Scott, com superestrutura composta por vigas protendidas com uso de cordoalhas de aço *Grade 300* (CP-210). A partir de 2013 estudos são realizados, principalmente na Coréia do Sul, sobre cordoalhas de aço de protensão com resistência à ruptura por tração de 2.400 MPa, entretanto ainda não existe normalização para esse tipo de aço de protensão.

Neste trabalho foram apresentados exemplos numéricos de dimensionamento e de custos de produção de longarinas em concreto armado com uso de aço comum CA-50 e em concreto protendido com uso de aço CP-190 RB e CP-210 RB, para quatro tabuleiros de ponte rodoviária em estudo, com comprimento nominal variável em função do centro da junta estrutural, sendo estes: 20, 25, 30 e 35 m. As variáveis foram limitadas a fim de minimizar a interferência nos resultados. As seções transversais das longarinas foram baseadas no projeto padrão PP-DE-C01/294 do DER-SP (2006).

A partir dos exemplos numéricos apresentados foi possível apresentar alguns dos parâmetros de projeto para o dimensionamento e a verificação de viga isostática armada e viga isostática protendida com uso de cordoalhas de 7 fios de aço CP-190 RB e CP-210 RB, para as situações de protensão limitada e completa.

Foi notado que para as situações de viga armada e viga protendida com protensão limitada o ELU condiciona o resultado de dimensionamento da armadura de flexão e que para

as situações de protensão completa o ELS condiciona o resultado de dimensionamento da armadura de flexão.

Foi observado no dimensionamento que para os arranjos de cabos de mesma intensidade de força de protensão, foi possível reduzir uma cordoalha de aço com diâmetro de 12,7 mm em cada cabo de protensão para as vigas protendidas com uso de aço CP-210 RB, em relação as vigas protendidas com uso de aço CP-190 RB. Também foi possível observar o menor consumo e melhor arranjo de armadura longitudinal e transversal nas longarinas protendidas em comparação com as longarinas armadas.

Foi notado nos resultados de dimensionamento de longarina isostática armada que a fadiga da armadura transversal é mais crítica que a fadiga da armadura longitudinal, sendo necessário na maioria das seções de cálculo adotar praticamente o dobro da armadura calculada para o cisalhamento combinado com torção no ELU.

Foi possível também observar que o consumo de aço referente a armadura de cisalhamento e torção para a viga armada foi superior em comparação com a viga protendida, em razão dos efeitos da protensão. Quando comparada a viga armada com a viga com protensão limitada, o consumo de aço foi maior em torno de 35% e quando comparada com a viga com protensão completa o consumo de aço foi maior em torno de 45%. Conforme Endicoot (2007), a armadura transversal pode ser quase toda eliminada ao se utilizar o CUAD (concreto de ultra-alto desempenho), entretanto a ABNT NBR 6118:2014 exige a utilização de armadura mínima.

Também foi possível observar que para as longarinas com protensão completa, o momento de fissuração do elemento estrutural é superior ao momento fletor máximo em serviço, deste modo o elemento estrutural encontra-se não fissurado, permitindo considerar toda a inércia bruta da seção de concreto. Para as longarinas armadas e longarinas protendidas com protensão limitada, o momento de fissuração do elemento é inferior ao momento fletor máximo em serviço, deste modo o elemento estruto, deste modo o elemento encontra-se fissurado. Foi observado que para as longarinas com protensão completa o deslocamento final da longarina foi cerca de 1 cm e que, deste modo, houve praticamente a eliminação da flecha diferida ao longo do tempo.

A partir do comparativo de custos de mercado apresentado, foi observado que o custo da cordoalha nua de CP-210 RB é maior que a de CP-190 RB em cerca de 5%, porém o consumo de armadura ativa de CP-210 utilizado para produção de vigas pré-moldada é menor quando comparado ao CP-190, resultando no custo final de produção de viga pré-moldada protendida com uso de aço CP-210 menor que viga pré-moldada protendida com uso de aço CP-190 RB, em torno de 2%. Sendo assim, é verificado que o ganho de resistência do aço em 10% é inferior ao aumento do custo do material em 5%.

Para os casos em estudo, foi verificado que o custo de produção de longarina prémoldada com protensão limitada é sempre inferior ao custo de produção de longarina com protensão completa, em torno de 6%. Entretanto foi verificado que as vigas pré-moldadas protendidas com protensão completa apresentam melhor desempenho estrutural no Estado Limite de Serviço de que as vigas protendidas com protensão limitada e de que as vigas armadas, devido a eliminação de fissuras. Pode se concluir assim que a viga pré-moldada isostática com protensão completa apresenta melhor desempenho técnico devido a maior durabilidade, diminuição ou praticamente eliminação da fadiga da armadura e da flecha diferida na longarina ao longo do tempo. A diminuição do deslocamento da longarina promove maior conforto ao usuário, pois permite o tráfego sobre tabuleiro plano.

Observou-se também que o custo de ancoragem ativa representa cerca de 20% do custo total da viga pré-moldada isostática protendida com comprimento de 19 m, sendo este percentual maior que o custo dos serviços de concreto e de forma. Para vigas isostáticas de maior comprimento este percentual diminui, como por exemplo para a viga com comprimento de 34 m, no qual o custo de ancoragem ativa representa cerca de 15% do custo total. Deste modo, é possível concluir que as quantidades de aparelhos de ancoragem ativa influenciam de modo significativo o custo total de produção e que menores quantidades resultam em menor custo de produção de viga pré-moldada.

Este trabalho apresentou, a partir dos custos de produção de longarinas por área de tabuleiro, linhas de tendência para cada sistema construtivo em estudo, a fim de determinar o ponto ótimo de utilização de longarina isostática pré-moldada para cada sistema construtivo em função do comprimento nominal do tabuleiro considerado entre 20 a 35 m. As retas de tendência foram ilustradas para os casos de longarina pré-moldada armada com uso de aço convencional CA-50 e de longarina pré-moldada protendida com uso de aço CP-190 RB e CP-210 RB, para as situações de protensão limitada e completa.

A partir das retas de tendência, considerando os custos atuais fornecidos com uso de Tabela de Preços Unitários (TPU) do DER-SP (2018), dos serviços de concreto, forma metálica, aço CA-50, aço CP-190, aço CP-210 e ancoragem ativa, conclui-se que para os tabuleiros rodoviários analisados neste trabalho com comprimento nominal de até 22 m, a opção com menor custo é a solução em concreto armado. A partir desse comprimento a opção com menor custo é a solução em concreto protendido com protensão limitada e uso de aço CP-210 RB. Em todos os casos em estudo, o custo utilizando o aço CP-210 RB resultou menor que o utilizando o aço CP-190 RB. O mesmo pode ser concluído em relação à protensão limitada, sempre de menor custo que a protensão completa.

Este trabalho também apresentou as equações para determinar o custo de produção de longarina pré-moldada em função do comprimento nominal do tabuleiro e em função dos custos unitários dos serviços de concreto, forma metálica, aço CA-50, aço CP-190, aço CP-210 e ancoragem ativa. As equações são apresentadas em função de custos unitários, pois os custos unitários podem sofrer alteração com o passar do tempo e em razão da alteração do local de produção.

Por fim, pode se concluir que, para as limitações desse trabalho, a utilização de aço de protensão CP-210 RB permite amplificar o campo de aplicação de longarina pré-moldada isostática protendida.

Dados os resultados obtidos, o presente trabalho contribui para auxiliar os pesquisadores e os profissionais envolvidos em OAE (Obras de Arte Especiais) na escolha do sistema construtivo mais adequado para a superestrutura em função do comprimento nominal do tabuleiro de pontes ou viadutos rodoviários entre 20 a 35 m.

Para continuação desta pesquisa é sugerido para trabalhos futuros estudos da superestrutura para os seguintes casos: longarinas espaçadas a distâncias menores que a deste trabalho; viga armada com seção transversal maior que a deste trabalho; viga protendida com seção transversal menor que a deste trabalho; variar o número de cabos de protensão a fim de minimizar os custos de ancoragem ativa; arranjo de armadura com o uso de cordoalhas de aço com diâmetro de 9,5 mm e 15,2 mm; utilizar longarinas de CUAD (concreto de ultra-alto desempenho); utilizar as seções transversais de longarinas prémoldadas desenvolvidas pelo CALTRANS (2015); tabuleiro com largura total diferente do analisado neste trabalho.

9 REFERÊNCIAS BIBLIOGRÁFICAS

AMERICAN CONCRETE INSTITUTE (ACI). ACI 318: Building code requirements for structural concrete. Farmington Hills, 2014.

. ACI 239: Minutes of committee meeting. Toronto, 2012.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). **ASTM A416**: Standard specification for low-relaxation, seve-wire steel strand for prestressed concrete. West Conshohocken, 2017.

ARCELOR MITTAL. **Prestressed concrete – wire and strand**. Sainte-Colombe: Arcelor Mittal, 2010. Disponível em http://www.constructalia.com/repository/Products/CivilEngineering/Wire_Strands_EN.pdf>, acesso em 26 de maio de 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 6118**: Projeto de estruturas de concreto – Procedimentos. Rio de Janeiro, 2014.

_____. **NBR 7187**: Projeto de pontes de concreto armado e de concreto protendido. Rio de Janeiro, 2003.

_____. **NBR 7188**: Carga móvel rodoviária e de pedestres em pontes, viadutos, passarelas e outras estruturas. Rio de Janeiro, 2013.

_____. NBR 7189: Cargas móveis para projeto de obras ferroviárias. Rio de Janeiro, 1985.

_____. NBR 7482: Fios de aço para concreto protendido. Rio de Janeiro, 1991.

_____. **NBR 7482**: Fios de aço para estruturas de concreto protendido – Especificação. Rio de Janeiro, 2008.

_____. NBR 7483: Cordoalhas de aço para concreto protendido – Requisitos. Rio de Janeiro, 2008.

_____. NBR 8681: Ações e segurança nas estruturas – Procedimento. Rio de Janeiro, 2003.

_____. **NBR 9062**: Projeto e execução de estruturas de concreto pré-moldado. Rio de Janeiro, 2017.

ATIR. STRAP – Structural Analysis Program, STRAP. Version 2017. Tel Aviv: ATIR Engineering Software Development Ltd, 2017. Microsoft Windows.

BEER, F. P. et al. **Mecânica dos materiais**. Tradução de José Benaque Rubert. 7. ed. Porto Alegre: McGraw-Hill, 2015. 838p.

BELGO BEKAERT ARAMES. **Fios e cordoalhas para concreto protendido**. Belo Horizonte: Belgo Bekaert Arames, 2015. Disponível em http://longos.arcelormittal.com.br/pdf/produtos/construcao-civil/fios-cordoalhas/catalogo-fios-cordoalhas.pdf>, acesso em 25 de março de 2018.

BLAIS, P. Y; COUTURE, M. Precast, prestressed pedestriam bridge – worlds first reactive poder concrete structure. **PCI Journal**, Chicago, v. 44, p. 60-71, sept./oct. 1999. Disponível em https://www.pci.org/PCI_Docs/Publications/PCI%20Journal/1999/Sept-Oct/Precast%20 Prestressed%20Pedestrian%20Bridge%20-%20World's%20First%20Reactice%20Poweder %20Concrete%20Structure.pdf>, acesso em 4 de abril de 2018.

BRIDON. **Construction products**. Doncaster: Bridon, 2010. Disponível em http://www.bridon.com/uk/construction-industry/downloads/Bridon-Construction-Products.pdf>, acesso em 25 de março de 2018.

BRITISH STANDARDS INSTITUTION (BSI). **BS 5896**: High tensile steel wire and strand for the prestressing of concrete – Specification. London, 2012.

BROWN, D. J. Bridges: three thousand years of defying nature. 3. ed. London: Mitchell Beazley, 2005. 208p.

BUCHAIM, R. **Concreto protendido: tração axial, flexão simples e força cortante**. Londrina: EDUEL, 2007. 256p.

CALIFORNIA DEPARTMENT OF TRANSPORTATION. **Bridge design pratice**. 4 ed. Sacramento: CALTRANS, 2015. Disponível em http://www.dot.ca.gov/des/techpubs/bdp.html, acesso em 21 de maio de 2017.

CARNIO, M. A. Aspectos gerais sobre o uso do concreto reforçado com fibras no Brasil: produção, projeto, tecnologia e normalização. **Concreto & Construções**, São Paulo, n. 87, p. 26-32, jul./set. 2017.

CARROLL, J. C; COUSINS, T. E; ROBERTS-WOLLMANN, C. L. The use of grade 300 prestressing strand in pretensioned, prestressed concrete beams. **PCI Journal**, Chicago, v. 62, p. 49-65, jan./feb. 2017. Disponível em , acesso em 28 de junho de 2016.

CARVALHO, R. C. Estruturas de pontes. Notas de aula. São Carlos: UFSCAR, 2013. 111p.

_____. Estruturas em concreto protendido: pré-tração, pós-tração, cálculo e detalhamento. 2. ed. São Paulo: Pini, 2017. 447p.

CAUDURO, E. L; GARCIA, D. L. Evolução dos aços para protensão no Brasil. **Concreto & Construções**, São Paulo, n. 78, p. 69-71, abr./jun. 2015.

CHANDRA, V. et al. World's first thermoplastic bridges. In: FHWA bridge engineering conference, Orlando, 2010. **Proceedings in FHWA bridge engineering conference**. Orlando: FHWA, 2010. Disponível em http://www.axionsi.com/wp-content/uploads/2016/05/Worlds-First-Thermoplastic-Bridges-KIM-CHANDRA-metric.pdf>, acesso em 28 de junho de 2016.

CHOLFE, L; BONILHA, L. A. S. **Concreto protendido: teoria e prática**. 2. ed. São Paulo: Pini, 2016. 360p.

COMITÉ EUROPÉEN DE NORMALISATION (CEN). **prEN 10138-3**: Prestressing steels – Part 3: Strand. Brussels, 2011.

DEPARTAMENTO DE ESTRADAS DE RODAGEM DO ESTADO DE SÃO PAULO. **ET-DE-C00/001** – Especificação técnica de concreto estrutural, ET-DE-C00/001. São Paulo: DER, 2006. Disponível em http://www.der.sp.gov.br/Website/Acessos/Documentos/Tecnicas .aspx>, acesso em 6 de maio de 2018.

_____. **ET-DE-C00/002** – Especificação técnica de formas para concreto, ET-DE-C00/002. São Paulo: DER, 2006. Disponível em http://www.der.sp.gov.br/Website/Acessos/ Documentos/Tecnicas.aspx>, acesso em 6 de maio de 2018.

_____. **ET-DE-C00/004** – Especificação técnica de armaduras para concreto estrutural, ET-DE-C00/004. São Paulo: DER, 2006. Disponível em http://www.der.sp.gov.br/Website/Acessos/Documentos/Tecnicas.aspx, acesso em 6 de maio de 2018.

_____. **IP-DE-C00-001_A** – Instrução de projeto de estrutura de obra de arte especial, IP-DE-C00-001_A. São Paulo: DER, 2005. Disponível em http://www.der.sp.gov.br/Website/Acessos/Documentos/Tecnicas.aspx, acesso em 6 de maio de 2018.

_____. **PP-DE-C01/294** – Projeto padrão de seções transversais de Obras de Arte Especiais, PP-DE-C01/294. São Paulo: DER, 2006. Disponível em http://www.der.sp.gov.br/Website/Acessos/Documentos/Tecnicas.aspx, acesso em 6 de maio de 2018.

_____. **PP-MC-C01/008** – Memorial de cálculo de superestrutura de tabuleiro de 30,0m x 14,10m, PP-MC-C01/030. São Paulo: DER, 2005.

_____. **PP-MC-C01/012** – Memorial de cálculo de superestrutura de tabuleiro de 35,0m x 14,10m, PP-MC-C01/030. São Paulo: DER, 2005.

_____. **PP-MC-C01/029** – Memorial de cálculo de superestrutura de tabuleiro de 20,0m x 14,10m, PP-MC-C01/030. São Paulo: DER, 2005.

_____. **PP-MC-C01/030** – Memorial de cálculo de superestrutura de tabuleiro de 25,0m x 14,10m, PP-MC-C01/030. São Paulo: DER, 2005.

_____. **TPU** – Tabela de preços unitários, TPU. São Paulo: DER, 2018. Disponível em http://www.der.sp.gov.br/Website/Acessos/Documentos/PrecosUnitarios.aspx>, acesso em 30 de maio de 2018.

DIAS, L. A. M. Estruturas de aço: conceitos, técnicas e linguagem. 11. ed. São Paulo: Zigurate, 2015. 320p.

EL DEBS, M. K. **Concreto pré-moldado: fundamentos e aplicações**. 2. ed. São Paulo: Oficina de Textos, 2017. 456p.

EL DEBS, M. K; TAKEYA, T. Introdução às pontes de concreto. Notas de aula. São Carlos: USP, 2010. 252p.

ELLIOTT, K. S. Precast concrete structures. 2 ed. Boca Raton: CRC Press, 2016. 732p.

ELLIOTT, K. S; JOLLY, C. K. **Multi-storey precast concrete framed structures**. 2 ed. Chichester: Wiley-Blackwell, 2013. 741p.

EMERICK, A. A. **Projeto e execução de lajes protendidas**. Rio de Janeiro: Interciência, 2005. 191p.

ENDICOTT, W. A whole new cast. **Aspire – The concrete bridge magazine**, Chicago, p. 26-34, summer 2007. Disponível em http://aspirebridge.com/magazine/2007Summer/mars_hill_sum07.pdf, acesso em 20 de janeiro de 2018.

FÉDÉRATION INTERNATIONALE DU BÉTON. **Precast concrete bridges**. State-of-art report. Bulletim d'information, n.29. Lausanme: FIB, 2004.

FIBERCORE EUROPE. **World's expert manufacturer of fibre-reinforced**, 2018. Disponível em <http://fibercore-europe.com>, acesso em 25 de março de 2018.

FRANÇA, R. L. S; ISHITANI, H; GRAZIANO, F. P; Concreto protendido: conceitos fundamentais. Notas de aula. São Paulo: EPUSP, 2004. 117p.

FREITAS, M. **Pontes: introdução geral – definições**. Notas de aula. São Paulo: EPUSP, 1978. 114p.

FREYSSINET, A. E. **Eugène Freyssinet: une révolution dans l'art de construire**. Paris: Presses de l'école nationale des Ponst er Chaussées, 2004. 196p.

FREYSSINET. **Sistema Freyssinet pra protensão e estais**. São Paulo: Freyssinet, 2012. Disponível em http://www.freyssinet.com.br/baixar/?arquivo=wp-content/uploads/2012/12/ Catalogo-Freyssinet-Brasil.pdf>, acesso em 30 de outubro de 2016.

FUSCO, P. B. **Técnica de armar as estruturas de concreto**. 2. ed. São Paulo: Pini, 2013. 405p.

HANAI, J. B. **Fundamentos do concreto protendido**. Notas de aula. São Carlos: USP, 2005. 110p. Disponível em http://www.set.eesc.usp.br/mdidatico/protendido/arquivos/ cp_ebook_2005.pdf>, acesso em 3 de maio de 2016.

HIIL, A. T. Jr. Material properties of the grade 300 and grade 270 prestressing strands and their impact on the design of bridges. 2006. 124p. Dissertação (Mestrado em Engenharia Civil) – Virginia Polytecchnic Institute and State University, Blacksburg, 2006. Disponível em https://vtechworks.lib.vt.edu/handle/10919/31639, acesso em 31 de agosto de 2017.

HODGES, H. T. **Top strand effect and evaluation of effective prestress in prestressed concrete beams**. 2006. 171p. Dissertação (Mestrado em Engenharia Civil) – Virginia Polytecchnic Institute and State University, Blacksburg, 2006. Disponível em https://vtechworks.lib.vt.edu/handle/10919/36300>, acesso em 31 de agosto de 2017.

HONGTAO, L. World's longest highest glass bridge to open. **Xinhua**, Pequim, 17 ago. 2016. Disponível em http://www.xinhuanet.com/english/2016-08/17/c_135607128.htm, acesso em acesso em 30 de outubro de 2016.

INSTEEL INDUSTRIES. **Physical properties of strand**. Mount Airy: Insteel Industries, 2012. Disponível em http://www.insteel.com/media/5784/physical_properties_strand.pdf, acesso em 25 de março de 2018.

ISSAC, P. M. A critical analysis of Bloukrans bridge. In: Bridge engineering conference 2008, Bath, 2008. **Proceedings in bridge engineering conference 2008**. Bath: University of Bath, 2008. Disponível em http://people.bath.ac.uk/pi202/Files/Isaac%20Paper%2003.pdf, acesso em 20 de janeiro de 2018.

KIM, J. K. et al. Tensile behavior of new 2200 MPa and 2400 MPa strands according to various types of mono anchorage. **Structural engineering and mechanics**, Daejeon, v. 47, p. 383-399, aug. 2013. Disponível em http://koreascience.or.kr/article/ArticleFullRecord.jsp? cn=KJKHB9_2013_v47n3_383>, acesso em 4 de abril de 2018.

KIM, J. K; YANG, J. M; YIM, H. J. Experimental evaluation of transfer length in pretensioned concrete beams using 2400 MPa prestressed strands. **Journal of structural engineering**, Reston, v. 142, p. 1-10, nov. 2016. Disponível em https://ascelibrary.org/doi/10.1061/%28ASCE%29ST.1943-541X.0001567, acesso em 4 de abril de 2018.

LAFARGE. **Executive summary – completed north american ductal bridges**, 2009. Disponível em https://www.fhwa.dot.gov/hfl/resources/webinar/uhpc_north_america_lafarge_2009.pdf>, acesso em 4 de abril de 2018.

_____. Little cedar creek bridge – precast elements, 2016. Disponível em https://www.ductal.com/en/engineering/little-cedar-creek-bridge-iowa-usa-precast-elements, acesso em 4 de abril de 2018.

LEET, K. M; UANG, C; GILBERT, A. M. **Fundamentos da análise estrutural**. Tradução de José Eduardo Nóbrega Tortello. 3. ed. São Paulo: McGraw-Hill, 2009. 793p.

LEONHARDT, F. **Construções de concreto, v.5: concreto protendido**. Tradução de João Luís Escosteguy Merino. Rio de Janeiro: Interciência, 1983. 316p.

_____. Construções de concreto, v.6: princípios básicos da construção de pontes de concreto. Tradução de João Luís Escosteguy Merino. Rio de Janeiro: Interciência, 1979. 242p.

LIMA, N. A; ALMEIDA, S. M. F. Vantagens das lajes de continuidade nas pontes prémoldadas. Juiz de Fora: Templo, 2013. 69p.

LOFLIN, B. J. Bond and material properties of the grade 270 and grade 300 prestressing strands. 2008. 159p. Dissertação (Mestrado em Engenharia Civil) – Virginia Polytecchnic Institute and State University, Blacksburg, 2008. Disponível em https://vtechworks.lib.vt.edu/handle/10919/33838 , acesso em 31 de agosto de 2017.

MACDONALD, D; NADEL, I. Golden Gate Bridge: history and design of an icon. San Francisco: Chronicle Books, 2008. 128p.

MAKLADA. **Seven wire prestressed strand**. Borj Cédria: Maklada, 2014. Disponível em http://www.maklada.com/Fr/upload/1391178941.pdf>, acesso em 25 de março de 2018.

MASON, J. **Pontes em concreto armado e protendido**. Rio de Janeiro: Livros Técnicos e Científicos, 1977. 320p.

MELO, C. E. E. **Manual Munte de projeto em pré-fabricados de concreto**. 2. ed. São Paulo: Pini, 2007. 540p.

MIGLIORE, G. M. **Dimensionamento e utilização de laje alveolar protendida**. 2008. 115 f. Dissertação (Graduação) – UNIFEB, Barretos, 2008.

MIGLIORE JUNIOR, A. R. **Concreto protendido**. Notas de aula. Barretos: UNIFEB, 2017. 150p.

_____. Formulário de sugestão de revisão da ABNT NBR 6118. CT 301 – Comitê IBRACON/ABECE de projeto de estruturas de concreto. 2018.

MULLER, R. M; KOELLE, P; ALMEIDA, C. N. A utilização de UHPC em obras no Brasil. **Concreto & Construções**, São Paulo, n. 87, p. 57-62, jul./set. 2017.

NAWY, E. G. **Prestressed concrete: a fundamental approach**. 5. ed. Upper Saddle River: Pearson, 2009. 984p.

NOGUEIRA, J. A. C. et al. Sistema de fôrmas plásticas para lajes de concreto. **Concreto & Construções**, São Paulo, n. 70, p. 82-88, abr./jun. 2013.

PASTORE, M. V. F. Estudo comparativo de tabuleiros de pontes com vigas prémoldadas armadas e protendidas. 2011. 177 f. Dissertação (Graduação) – USP, São Carlos, 2011. PERRY, V. H; PARSEKIAN, G. A; SHRIVE, N. G. Inovação em estruturas com concreto de ultra-alto desempenho na América do Norte. **Concreto & Construções**, São Paulo, n. 87, p. 50-56, jul./set. 2017.

PFEIL, W. **Concreto protendido, v.1: introdução**. Rio de Janeiro: Livros Técnicos e Científicos, 1984. 201p.

_____. Pontes em concreto armado: elementos de projetos, solicitações e dimensionamento. Rio de Janeiro: Livros Técnicos e Científicos, 1979. 433p.

PRECAST / PRESTRESSED CONCRETE INSTITUTE. **PCI bridge design manual**. 3 ed. Chicago: PCI, 2011.

_____. PCI design handbook: precast and prestressed concrete. 7 ed. Chicago: PCI, 2010.

_____. **Designing with precast and prestressed concrete**. Chicago: PCI, 2006. Disponível em <http://www.gcpci.org/index.cfm/ precast_solutions/primer>, acesso em 20 de janeiro de 2018.

SANABRA-LOEWE, M; CAPELLÀ-LLOVERA, J. The four ages of early prestressed concrete structures. **PCI Journal**, Chicago, v. 59, p. 93-121, fall 2014. Disponível em < https://www.pci.org/PCI_Docs/Publications/PCI%20Journal/2014/Fall/The%20four%20ages %20of%20early%20prestressed%20concrete%20structures.pdf>, acesso em 20 de janeiro de 2018.

SANTOS, W. R. Processo produtivo do aço para concreto protendido. In: III SELAP - Seminário latino-americano de protensão, Guarulhos, 2016. Anais do III Seminário latinoamericano de protensão. Guarulhos: SELAP, 2016.

SCAW. **Wire and strand – construction products**. Germiston: Scaw Metals, 2014. Disponível em http://www.scaw.co.za/Shared%20Documents/Brochures/Wire%20and%20Strand/Construction%20products%20EN%2010138.pdf>, acesso em 25 de março de 2018.

STRAND-TECH MANUFACTURING. **Products/application sell sheet**. Sumerville: STM, 2017. Disponível em https://www.kci-corp.com/cms/wp-content/uploads/ksw-stm-sellsheet-082317-f.pdf, acesso em 25 de março de 2018.

STUCCHI, F. R. **Pontes e grandes estruturas**. Notas de aula. São Paulo: EPUSP, 2006. 100p. Disponível em http://www.lem.ep.usp.br/PEF2404/Apostila%20Super.pdf>, acesso em 3 de maio de 2016.

SUMIDEN WIRE. **Uncoated pc strand**. Stockton: Sumiden Wire, 2015. Disponível em <http:// sumiden.wpengine.com/wp-content/uploads/2015/07/PC-Strand-Specifications1.png>, acesso em 25 de março de 2018.

SUNMING. **Pc steel strand**. Dezhou: Sunming, 2015. Disponível em http://www.pcstrand.net/pcsteelstrand.html, acesso em 25 de março de 2018.

THOMAZ, E. C. S. **Pontes em balanços sucessivos: Eng. Emilio Baumgart**. Notas de aula. Rio de Janeiro: IME, 2011. 30p. Disponível em http://aquarius.ime.eb.br/~webde2/ prof/ethomaz/baumgart/baumgart_ponte_rio_do_peixe_1.pdf>, acesso em 15 de fevereiro de 2017.

_____. **Pontes em concreto protendido: vigas pré-moldadas**. Notas de aula. Rio de Janeiro: IME, 2005. 13p. Disponível em http://aquarius.ime.eb.br/~webde2/prof/ethomaz/pontes/premold01.pdf>, acesso em 15 de fevereiro de 2017.

TMG. **Pc strands, wire and bar**. Hougang: TMG, 2014. Disponível em https://www.tmgglobals.com/download_pdf/76>, acesso em 25 de março de 2018.

U. S. DEPARTMENT OF TRANSPORTATION – FEDERAL HIGWAY ADMINISTRATION. **FHWA-HRT-13-060** – Ultra-high performance concrete: a state-of-the-art report for the bridge community, FHWA-HRT-13-060. MacLean: FHWA, 2013. Disponível em https://www.fhwa.dot.gov/publications/research/infrastructure/structures/hpc/13060/13060.pdf>, acesso em 28 de junho de 2017.

_____. **FHWA-NHI-13-026** – Post-tensioning tendon installation and grouting manual, FHWA-NHI-13-026. Washington: FHWA, 2013. Disponível em https://www.fhwa.dot.gov/bridge/construction/pubs/hif13026.pdf>, acesso em 28 de junho de 2017.

_____. **FHWA-NHI-15-047** – Load and resistance fator design (LRFD) for highway bridge superstructures, FHWA-NHI-15-047. Washington: FHWA, 2015. Disponível em https://www.fhwa.dot.gov/bridge/pubs/nhi15047.pdf, acesso em 28 de junho de 2017.

STRUCTURAE. International database and gallery of structures - bridges and viaducts, 2018. Disponível em https://structurae.net/structures/bridges-and-viaducts, acesso em 20 de janeiro de 2018.

VASCONCELOS, A. C. Emílio Henrique Baumgart: suas realizações e recordes, uma vida dedicada ao concreto armado. São Paulo: Otto Baumgart, 2005. 102p.

_____. O concreto no Brasil, v.1: recordes, realizações, história. 2. ed. São Paulo: Pini, 1992. 277p.

_____. **O concreto no Brasil, v.3: pré-fabricação, monumentos, fundações**. São Paulo: Studio Nobel, 2002. 350p.

VIRGINIA TRANSPORTATION RESEARCH COUNCIL. **FHWA/VTRC 10-CR2** – Grade 300 prestressing strand and the effect of vertical casting position. Springfield: VTRC, 2009. Disponível em <htp://www.virginiadot.org/vtrc/main/online_reports/pdf/10-cr2.pdf>, acesso em 31 de agosto de 2017.

VOESTALPINE. **Prestressing strand – safety builds on quality**. Linz: Voestalpine, 2016. Disponível em <http://www.voestalpine.com/division_stahl/content/download/51681/647085/ file/voestalpine_Wire_Prestressing_Wire_Strand_Folder.pdf>, acesso em 28 de junho de 2016. XERCAVINS, P; DEMARTHE, D; SHUSHKEWICH, K. Eugene Freyssinet, his incredible journey to invent and revolutionize prestressed concrete construction. In: 3rd FIB international congress, Washington, 2010. **Proceeding in 3rd FIB international congress**. Washington: FIB, 2010. Disponível em http://www.aspirebridge.com/resources/fib_Congress_Freyssinet_by_Shushkewich.pdf>, acesso em 28 de junho de 2017.

WIKIPEDIA. **Ponte Sant'Angelo**. 2004. Disponível em <https://en.wikipedia.org/wiki/ Ponte_Sant%27Angelo#/media/File:Sant_Angelo_bridge.jpg>, acesso em 15 de janeiro de 2018.

YOUNG HEUNG. **Pc strand**. Seoul: Young Heung, 2012. Disponível em http://www.youngwire.com/eng/product/product04.asp, acesso em 25 de março de 2018.

YUANXIAN HI-TECH MATERIAL. **7 wire pc strand**. Tianjin: Yuanxian, 2016. Disponível em http://www.yxmaterial.cn/html_products/7-wires-PC-strand-126.html, acesso em 25 de março de 2018.

10 APÊNDICE

As Figuras a seguir ilustram o detalhamento típico de forma e de armadura para a longarina pré-moldada VP2 do exemplo realizado do tabuleiro 14,10x25,00 m².

Figura 10.1: Forma da longarina pré-moldada VP2

Figura 10.2: Armadura transversal da longarina pré-moldada VP2 (CA)

Fonte: Autor

Figura 10.3: Armadura passiva de flexão da longarina pré-moldada VP2 (CA)

Figura 10.4: Armadura ativa de flexão da longarina pré-moldada VP2 (CP)

Fonte: Autor